CONVERGE

TRANSPORT TELEMATICS
SUPPORT & CONSENSUS

TELERATICT APPEICATIONS

SYSTEM ARCHITECTURE
Project Number: TR 1101

Project Title: CONVERGE
Deliverable Type: PU

Déliverable Number: DSA2.3
Contractual Date of Délivery: 10/02/98

Actual Date of Delivery: 10/02/98

Title of Ddliverable:

Work-Package:
Nature of the Déliverable:
Author (9):

Guidedlines for the Development and Assessment of
Intelligent Trangport System Architectures

SA2& 3
Report

P H Jesty, J-F Gaillet, J Giezen, G Franco,
| Leighton, H-J Schultz

Abstract:

A sysem architecture provides the bass for a working and workable system. These combined
guidelines provide advice for Trangport Telematics projects on the development and assessment of
their system architectures. They distinguish between three levels of architecture which together form
a system architecture, and show how the development should proceed once the user needs are
known. The issues covered include system characteristics and system requirements; reference
models, including those created by SATIN for urban, inter-urban and in-vehicle systems, and
enterprise functiond, information, physica and communications architectures. Checkligs of the
issues to be conddered are provided, and a number of reviews and andyses for the assessment of

an architecture are described.

Keyword Ligt:

Assessment, Functiond Architecture, Logicd Modd, Physicd Architecture, Physcd Modd,

TRANSPORT TELEMATICS
SUPPORT & CONSENSUS

Reference Models, System Architecture, System Requirements

CONVERGE

SYSTEM ARCHITECTURE

Guideinesfor the Development and
Assessment of Intelligent Transport
System Architectures

February - 98

Issue: 1.0

CONVERGE System Architecture Partners:

Atkins Wootton Jeffreys (co-ordinator)
ERTICO
Heusch/Boesefeldt GmbH
SIS
MIZAR Automazione Sp.A.

The University of L eeds
TNO-TPD

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Table of Contents

1. EXECUTIVE SUMMARY 7
2. LIST OF ABREVIATIONS 8
3. INTRODUCTION 9
3.1 Purpose of the document 9
3.2 Structure of the document 9
3.3Whoweare 10
3.3.10urams 10

4. DEFINITION OF SYSTEM ARCHITECTURE: 11
4.1 Introduction 11
4.2 Working and Workable Systems 11
4.2.1 Feedback from Experience 12

4.3 Levelsof Architecture 14
4.3.1 Infrastructure 16

4.4 Further Implications 16
4.5What is Architecture Assessment 17
5. SYSTEM ARCHITECTURE ISSUES 19
5.1 Complexity Management 19
5.1.1 Connections 19

5.1.2 Abstraction 19

5.2 Consistency 20
5.3 Flexibility 20
5.4 Maintainability 21
5.5 Scale enlar gement 21
5.6 Emergent Properties 22
5.6.1 Controllability 23

5.7 Multi-disciplinarity 23
5.7.1 Hardware and Software 23

5.8 Verification & Validation 24
5.8.1 Testahility 24
February, 1998 Page 3

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6. SYSTEM ARCHITECTURE DEVELOPMENT 26
6.1 User Needs 29
6.2 System Concept 29

6.2.1 Vision Statement 30
6.2.2 Identification of the Users 30
6.2.3 Mission Statement 31
6.3 System Characteristics 31
6.4 System Requirements 31
6.4.1 User Needs vs. System Characteristics vs. System Requirements vs. System Specifications 33
6.5 System Boundary 34
6.5.1 Preliminary Safety Analysis 35
6.6 Level 2 and 3 System Properties- Reference Models 35
6.6.1 Responsibility 37
6.6.2 Zones of Autonomy 38
6.6.3 Production of aLayered Reference Model 38
6.7 Level 1 System Structure- Functional | ssues 39
6.7.1 Enterprise Architecture 40
6.7.2 Logical Model 40
6.7.3 Object-Orientation 41
6.7.4 Physical Model 12
6.8 Level 1 System Structure - Behavioural Issues 43
6.8.1 Usability 43
6.8.2 Risk/hazard Analysis 44
6.9 Level 0- Design 45
6.9.1 Standardisation 45
6.10 L egacy Systemsand Migration 45
6.10.1 Compatibility 46
6.10.2 New system architecture with interface bridge 46

7. THE ARCHITECTURE ASSESSMENT PROCESS 48
7.1 Objectives 48
7.2 Overview 49
7.3 Project System Architecture Assessment Report 49
7.4 User Needsl System Concept 50

7.4.1Vision Statement 50

7.4.2 ldentification of the Users 50

7.4.3 Mission Statement 50

7.4.4 The System Boundary 50

7.5 System Concept I System Characteristics 50
7.6 System Characteristicsll System Requirements 51
7.6.1 System Context Diagram 51
February, 1998 Page 4

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

7.7 System Requirementsll Reference M odels 52
7.7.1 Analysis of Goal-Oriented Functions 52
7.7.2 Review of Functionality and Behaviour 52

7.8 Reference Modelsll Level 1 Architectures
7.8.1 Functional Architecture
7.8.2 Control Architecture
7.8.3 Information Architecture
7.8.4 Enterprise Architecture
7.8.5 Physical Architecture
7.8.6 Communication Architecture

ARALLA D

u
»

7.9 Checksfor Consistency
7.10 Benefit Analysis 56

7.11 Cost-Benefit Analysis 56
7.11.1 Market Analysis 59

7.12 Functional Analysis 59

8. REFERENCES & BIBLIOGRAPHY 61

APPENDIX A PROPOSED SYSTEM ARCHITECTURE DELIVERABLE
CONTENTS LIST

APPENDIX B PROPOSED SYSTEM ARCHITECTURE ASSESSMENT
DELIVERABLE CONTENTS LIST

APPENDIX C LEVELS OF ARCHITECTURE
APPENDIXD SYSTEM CHARACTERISTICS
APPENDIX E CONTEXT REQUIREMENTS
APPENDIX F FUNCTIONAL REQUIREMENTS
APPENDIX G NON-FUNCTIONAL REQUIREMENTS
APPENDIXH PRELIMINARY SAFETY ANALYSIS

APPENDIX | SYSTEM ARCHITECTURE: THE DEVELOPMENT OF THE
REFERENCE MODEL

APPENDIX J SATIN REFERENCE MODELS
APPENDIX K ENTERPRISE ARCHITECTURE

APPENDIX L FUNCTIONAL ARCHITECTURE

February, 1998 Page 5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX M ODP AND THESE GUIDELINES
APPENDIX N INFORMATION ARCHITECTURE
APPENDIX O ASSESSMENT BY A REVIEWER
APPENDIX P THE PASSPORT CROSS
APPENDIX Q BEHAVIOUR ANALYSIS TOPICS
APPENDIX R THE CONVERGE ANALYSIS TOOL
APPENDIX'S SATIN DOCUMENTS

APPENDIXT WHISPER CASE STUDY

APPENDIX U BACKGROUND INFORMATION

February, 1998
Issue 1.0

Page 6

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

1. EXECUTIVE SUMMARY

These guiddines provide advice for Trangport Telematics projects on the development and
assessment of their system architectures, and suggestions are made as to the possible
contents of their System Architecture Ddliverables.

All systems have an architecture, even though most developers do not yet explicitly write it
down. This architecture provides the structure around which the system is developed. Once
the structure has been defined, ether implicitly or explicitly, it is then usudly very difficult
and expengve to changeit at alater date.

A system architecture provides a stable bass for a working and workable system for the
benefit of the entire system life-cycle.

The principa issues that need to be address during the creation of a system architecture are
Command and Control, Information Interchange, Collaboration, Conflict Resolution,
Complexity Management, Emergent Properties and Hexibility.

We can distinguish between three levels of architecture which together form a system
architecture.

A system architecture should be cresated before any detailed design is done. The crestion
process needs inputs from the User Needs, System Concept, System Characteristics and
the System Requirements. The System Requirements should include both primary and
derived requirements, the latter should include any safety requirements.

Top level system properties are described in Level 3 and Leve 2 Architectures, normaly
using alayered Reference Modd.

The system structure is described in the Level 1 Architectures, these normally consst of
Functiond, Information, Physical and Communication Architectures, with possbly Control
and Enterprise Architectures as well. The expected behaviour of the system structure must
aso be written down.

In order to confirm that a system architecture will provide a suitable basis upon which to
design and develop an ITS, an assessment should be made on al its aspects.

A full assessment process conssts of verifying that the outputs of each phase is on
conformance with the output of the previous phase, and vadidating that the output of each
phase reflects the User Needs. Benefit, and Cost-Benefit analyses can aso be done.

It is possible to estimate the potential performance of the find system using the Architecture
Assessment Tool that was aso developed by CONVERGE-SA.

February, 1998 Page 7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

2. LIST OF ABREVIATIONS

CAE Computer Aided Engineering

CASE Computer Aided Software/Systems Engineering

CIM Computer Integrated Manufacturing

DRIVE Dedicated Road Infrastructure for Vehicle safety in Europe
E-R Entity- Relationship

ERD Entity- Relationship Diagram

HMI Human Machine Interface

IRTE Integrated Road Trangport Environment

IT Information Technology

ITS Intelligent Transport System

IUTM Inter-Urban Traffic Management

ODP Open Digtributed Processing

0]0) Object-Oriented

(O Open Systems Interconnect

SAd System Adminigtration

SATIN IRTE System Architecture and Traffic control INtegration
SD System Dictionary

February, 1998 Page 8

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

3. INTRODUCTION

3.1 Purpose of the document

This document is amed a system designers and has the objective of bringing about the use of
“good practices’ in the area of system architecture. It does this by stressing the importance
and the need for a system architecture to achieve working and workable systems capable of
integrating well with other systems. A rationae, together with a set of techniques, is proposed
which, athough not mandatory, will asSgt system designers in the development of their
architectures. A case sudy is given in Appendix Twhich illugtrates how these guiddines
would be used in practice on a project. A proposed Architecture Ddliverable structure is
provided which will help projects present ther (system requirements and) architecture
definitions based on the guiddines.

This document aso provides systematic approach for the assessment of an Inteligent
Trangport System (ITS) system architecture which can be gpplied by any Transport Telematic
project. For maximum effect this assessment process should be performed ether during the
cregtion of a system architecture, or immediately afterwards so that any deficiencies can be
rectified quickly and chesply. The assessment methodology conssts of techniques and
checklists that can be applied to the results various phases in the system architecture stage of
thelife-cycle.

3.2 Structure of the document

Section 4 defines the concept of system architecture and describes the various elements that
would normdaly make up a full sysem architecture. It dso defines what is meant by
architecture assessment.

Section 5 discusses the various issues that need to be considered during the cregtion of a
system architecture.

Section 6 describes that part of the system life-cycle in which the system architecture should
be developed. Starting from User Needs, the processes involved in producing the System
Concept, System Characteristics and System Requirements are described. These are then
used to creste the Level 3 and Level 2 Reference Moddls, after which the various Level 1
Architectures can be produced. Condderation is aso given to the development of system
architectures for those systems which have to be integrated with existing systems, as opposed
to being created for ‘green fidd' dtes.

Section 7 describes the various processes that should be undertaken for a full assessment of a
system architecture. It will be useful to read this Section before any development work begins,
because it does look at the products of the development process from a different viewpoint,

February, 1998 Page 9
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

and time could be saved in the case that a product would otherwise be written in an
unsatisfactory manner.

Section 8 contains the references used in these Guiddines, and a bibliography of texts around
the subject of system architecture.

There are a number of gppendices which contain descriptions of techniques and checklists for
use during the development and/or assessment processes. Appendix T contains a case study
which demondtrates the practical gpplication of system architecture development. Appendix U
contains some background information which expands on the issues raised within the main
document, its objective is to introduce new concepts which could stimulate the reader. It is
recommended that the reader should refer to this gppendix to obtain a more theoretical
background.

3.3 Who we are

CONVERGE - System Architecture (CONVERGE-SA) was a horizonta project with the
following participants.
a) Atkins Wootton Jeffreys - Co-ordinator

b) ERTICO - Liaison with projects and point of contact

C) Heusch/Boesefeldt

d ISIS

& MIZAR

f) The Universty of Leeds

g TNO-TPD

3.3.1 Our aims

Theams of CONVERGE - System Architecture can be summarised asfollows:
To promote System Architecture in the Transport Telematics Programme by:
- providing common guiddines and toals;
- working with the Framework |V Trangport Telematics Projects,
To identify "good practices’ in the area of System Architecture;

To identify the key datributes of Integrated Road Trangport Environment (IRTE)
architectures and then of Integrated Transport System (ITS) architectures.

It was the objective of CONVERGE-SA to work with projects and not to dictate to them.
This verson of the Guiddines are made up from the earlier versons of the separate
Development and Assessment Guidelines, combined with feedback after they had been used.

February, 1998 Page 10
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

4. DEFINITION OF SYSTEM ARCHITECTURE:

4.1 Introduction

All systems have an architecture even though most developers do not yet explicitly write it
down. Thus, for example, when a decison is taken to use only two digits to indicate the year,
pat of the architecture becomes "this program will only work with dates from a sngle
century”. The fact that few people have written down this particular architecturd festure is
likely to lead to the "millennium time bomb".

Theissue of architecture becomes of increasing importance when systems are crested from the
integration of two or more sub-systems. There is a nai ve assumption that syslems integration
is only about data communication. This myth remains despite the great difficulty that many
developers have in creating good qudity integrated systems. We need to consider whether or
not there might be a fundamental reason for this difficulty, namely that of incompatible
architectures.

All systems are designed to work in an environment (possibly more than one) and assumptions
are made about that environment which are then built into the design. It is the top-leve
gtatements and/or assumptions about a system which make up the architecture of that system,
providing it with form and style as well as the more well known attributes of functiondity, Sze,
performance etc. The architecture provides the structure around which the system is
developed. Once this structure has been defined, ether implicitly or explicitly, it is usudly very
difficult and expensve to change it later. The Docklands Light Railway discovered this fact
when it wanted to operate trains longer than two carriages with stations which had only been
built to this origind length. A knowledge of the system architecture is vitd.

4.2 Working and Workable Systems

Once the existence of the system architecture is recognised, it can be used for the benefit of
the entire sysem life-cycle. The objective of a system architecture isto provide a stable basis
for a working and workable system. The requirement that a syslem should be "working” is
obvious A working sysem is one that not only has a st of fully functioning sub-systems, but
for which these sub-systems co-operate fully to provide the full functiondity required by the
gods of the sysem. However, the need for a sysem aso to be "workable' is often
overlooked in the rush to produce a system that can be seen to be doing something. A
workable system is not only pleasant to use, but is also easy to manage and maintain for its
planned lifetime.

A system architecture therefore encompasses both the god oriented functions that provide the
"working" objective, and aso the supporting functions that provide the "workable' objective.
Figure 4.1 shows that there are, in fact, a number of different sets of people for whom these
objectives must be satisfied, and they are likely to be interested in different atributes (see

February, 1998 Page 11
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Section 6.2.2). One particularly important stakeholder who may, or may nat, be included in
the categories of ‘Problem Owner’, ‘ Service Providers or ‘Users’ is the organisation which
takes the financid risk and provides the money. In many cases its will be (loca) government,
and the paliticians behind it, that will have a mgor influence over what will be constructed.

A system architecture must therefore provide flexibility so that solutions can be developed
which satidfy the separate objectives of the various clients in the environment chosen for the
goplication. It must dso lead to systems that are both manageable and maintainable throughout
their lifetime.

42.1 Feedback from Experience

Fgure 4.1 contains the arrow “Feedback from Experience’. In most other branches of
enginering more is learnt from those systems which have failed, than from those which have
succeeded [Petroski 1982]. Unfortunately, despite the many falures of informatic and
telematic systems, few formd studies have been made as to what actudly went wrong and
where. Many falures of large systems are not due to a single fault, but can be result of
interacting faults from different parts of the sysem. The avoidance of these falures is
paticularly chdlenging especidly when the different parts are normaly considered to be the
subject of different (academic) disciplines, and the person who should be consdering these
issues a an early stage in the project is the System Architect. Idedly, therefore, the system
architect should have congderable experience in the development of systemsin generd, and of
multi-disciplinary systemsin particular.

February, 1998 Page 12
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The Working System

System Concept
System
Architecture

System Construction
System Installation

The Workable System
System System
M anagement Maintenance

System
Operation

ProblemOwner|
Experts
Usrs
S
y
S
t
e
m
T
r
all|&
f
f
i||S
c||o
f
Ef|t
niiw
g||a
i r
nile
e
el|l|E
r||n
S|{|9
[
n
e
e
r
S
Service Providers |

Figure4.1 - Working and Workable Systems

February, 1998
Issue 1.0

Page 13

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

4.3 Levels of Architecture

The popularity of the term system architecture is causng confusion, in particular it has the
effect of blurring the distinction between an architecture and a design, to the extent that many
people do not even redise that there is a difference. When you visit two stately homes, each in
the same architecturd style, you do not expect them to be identica; as would be the case if
they had the same design. An architecture is thus something a a higher level than a design,
such tha whilgt it remains congtant, many different desgns can conform to it. We can
digtinguish between (at least) four levels of architecture for ITSs, asshown in Figure 4.2.

Multi-Authority

Level 3 Inter-Operability Properties I
Single Authority

Level 2 System Properties I

Overall I
Level 1 System Structure

Level O System Design I

Figure4.2 - Modé for ITS System Architecture

We can envisage the process of creeting eech leve as the identification of anything and
everything which is needed to provide a stable basis for the working and workable system
under congderation. Each level of architecture fixes those assumptions that need to be stable
at that levd for the environment(s) in which the system is to operate (see adso Appendix C).
The principal issues that need to be addressed during the creation of a system architecture are;

Command and control

Information interchange

Collaboration

Conflict resolution

Complexity management

Emergent properties

Hexibility
A Level 3 Architecture is necessary when the need for inter-operability between autonomous
enterprises or authorities arises. Whilst the nature of the Level 3 Architecture is Smilar to that
a Leve 2, the issues to be consdered at Levd 3 are likdy to be different. The means of
achieving consensus will dso be different since the sysem architect will have to negotiate,

February, 1998 Page 14
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

rather than dictate, a solution. It is for this reason that it is advisable to ded with dl the
autonomous enterprises inter-operability issues separately, rather than trying to incorporate
theminto Level 2. (See dso Section 6.6.1).

The Level 2 Architecture is necessary for the integration of functions and sub-functionsin a
working an workable manner. It is normaly written as one or more Reference Modds in
which the main information and control flows are identified. If the ITS comes under asngle
authority then aLevel 2 Architectureis probably the highest necessary.

The Level 1 Set of Architectures defines the overd| structure of the system, and how the sub-
systems relate to each other. It will normaly consst of a least four separate individud
architectures (see Figure 4.3):

Functional Architecture - this describes the functions and sub-functions [CORD DO004-
PT3] of the ITS, the flow of data between them, and the main databases (see Section
6.7.2).

Information Architecture - this describes the data needed by the ITS, and their
interrelationship (See Section 6.7.2).

Physica Architecture - this describes the grouping of the functions into physcd units, or
even “market packages’, and the communication lines between them (see Section 6.7.4).

Communication Architecture - this describes the flow of data between the physica units
both in terms of message sets, and the characteristics needed of the media (see Section
6.7.4).

1

Functional Architecture Information Architecture
Physical Architecture Communication Architecture

Figure 4.3 - Examplesof Level 1 Architectures

It should be noted that aLevel 1 Architecture should be, as far as possible, technology and/or
manufacturer independent. Thus, for example, a Level 1 Communications Architecture might

February, 1998 Page 15
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

indicate the necessity for a broadcast communications architecture, whilst a Leve 0 the
decison may be taken to use Ethernet.

For some ITSismay dso be ussful, or even necessary, to include two additional architectures:

Control Architecture - this describes the method of controlling of the system (see Section
6.7.2);

Enterpise Architecture - this describes the commercia and/or business relationships of the
various enterprises or authoritieswithin the ITS (see Section 6.7.1).

The Level 0 Architectureis not redly an “architecture’ at al; engineers have been quite happy
to cdl this a detalled desgn for many years. It is a manifedtation of the Leve 1 Sets of

Architectures with each sub-sysem and component being fully described, and dl the
necessary standards having been chosen.

4.3.1 Infrastructure

In norma gpeech an infrastructure is a framework of equipment to which other equipment may
be added, an exigting infrastructure is therefore defined at Level 0 and should not be confused
with an architecture. An exigting infrastructure will dso have Leve 1 and 2 Architectures,
though they may not necessarily be written down explicitly. The architecture of existing
infrastructures are of particular importance when there is a need to integrate with legacy
systems (see Section 6.10).

4.4 Further Implications

A Level 2 Architecture can lead to a family of Level 1 Architectures, and a Levd 1
Architecture can lead to afamily of Level 0 Architectures. It therefore follows that in order to
have compatible instances a Leve 0 it is necessary to fix the architecture a Levd 1, and in
order to have compatible instances a Leve 1 it is necessary to fix the architecture at Leved 2.
Indeed it may aso be true to say that in order to successfully integrate two systems at Leve
N, they must have a common architecture at Leve N+1. Whilst this is a nove hypothesisiit
does go along way towards explaining the current high fallure rate of integrated systems.

The activity of cregting a system architecture is uncommon and hence there is little expertise
normadly avalable. It is particularly important to understand the distinction between a design,
an architecture and a system architecture,

Design

Normd desgn techniques, and the life-cycle modds that incorporate them, are based on the
assumption that it is possble to obtain a full and complete set of requirements, and produce a
product that will satisfy them. This is the deterministic gpproach. A design is deterministic and

describes, normdly in detail, exactly how a particular modd of the system will be created.
There are no options remaining in adesign [Crowe 1996].

February, 1998 Page 16
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Architecture

This is a design of a design (a Leve 1) and describes the inter-rdationship of entities. An
individud architecture is usudly only concerned with one aspect of the entire system; thus the
functiond architecture describes the inter-rdaionship of the various functions etc. An
architecture is a description of a class of solutions and will permit the creation of a number of
designs, with different components, to achieve the same objective though perhaps in different
environments [Crowe 1996].

System Architecture

A system architecture is the set of dl the individud architectures, and any other Satements,
that describe the essence and condtitution of the system. Whilst a system architecture will not
in itsdf describe everything, al aspects of the system must be contained within it. Sometimes
this can be achieved usng system requirements, which state what the system has to do, rather
that system specifications which state how (in some detail) the system has to do it; on other
occasionsit is possble to permit options within a fixed sructure [Rechtin 1991].

A system architecture is therefore not a design, nor is it a system, it is a description
which forms the basis for a class of systems and hence for a set of designs. A system
architecture describes dl the atributes for a class of systems, and specifies those Structures
which are fixed, and those which may have multiple ingances. For a class of ITSs it is the
amagamation of knowledge from diverse fidds of expertise; indeed a system architect must be
a"Jack of dl Trades' covering dl the parts (an holistic gpproach), and dl the aspects (an
ontologica gpproach), for the entire life-cycle [Rechtin 1991] (see aso Appendix I). It should
contain a description of both the functional properties and the behavioura properties. In order
to diginguish between them then congder either a public utility before and after privatisation;
or two word processing packages, one based on Windows and the other on DOS. In each
example the same basc st of functions are being carried out, but the way in which this
happens, and is experienced by the user, may be very different indeed. The functiond
properties form the bass of the "working" objective, whilst the behaviourd properties
contribute to the "workable" objective.

45 What is Architecture Assessment

The word "assessment’ has a number of possible meanings and it is therefore useful not only to
state what architecture assessment is, but dso what it is not. There are a number of closdy
related words which are sometimes confused:

Assessment - the undertaking of an investigation in order to arrive a a judgement, based on
evidence, of the suitability of aproduct for its intended purpose.

February, 1998 Page 17
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Auditing - the process of examining a product and its related documentation for accuracy,
quality, completeness, consistency and traceability, and that its production has been performed
in conformance with a specified process.

Certification - the process of obtaining regulatory agency approva for afunction, equipment
or system, by establishing that it complies with dl gpplicable satutory regulations.

Evaluation - the process of measuring the effects of a system in operation to establish the
degree to which it satidfiesits intended purpose.

Review - the process of checking the conformance between the requirements of a product
and the draft product, with the am of finding anomdies.

Clearly there are overlaps between these processes, but the important points to notice are that:

a) except br evauation, and occasondly assessment, they are al performed before the
operationd phase of the life-cycle.

b) assessment is likdly to include both Audit and Review, especidly if the production process
isnovd, and itself needs possible improvements.

C) assessment is not certification, and may therefore be done in-house.

The need for Design Reviews to take place before implementation is now widdy recognised,
and with the introduction of the system architecture phase to the life-cycle [see Section 6],
there is now a corresponding need for an assessment of the architecture:

to identify any weakness before the norma design phase commences,

to confirm, as far as possible, that a system built in conformance with this architecture will
provide the benefits expected of it.

The “10:100:1000" rule describes the savings in cost which will be achieved the earlier in the
life-cyde that faults are discovered. This rule highlights the fact that the cost of fixing a fault
early in the desgn mght cos, say, 10 ECU; during development the cost to fix the same fault
will rise to 100 ECU because of the work that must be re-done. If the fault is not discovered
until the system is in operation the cost to fix it rises to 1000 ECU. In practice, of course, the
costs are higher but their ratio remains the same.

February, 1998 Page 18
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

5. SYSTEM ARCHITECTURE ISSUES

During the creation of a system architecture there are a number of issues that recur throughout
the process, they have therefore been extracted and discussed in this section.

5.1 Complexity Management

One of the obvious consequences of building a large system is that it can have a tendency to
become incomprehensible to those who have to design or use them. This is due to the
phenomenon of the combinatoria exploson which increases exponentidly as each sub-system
is added. Failure to implement fully functional systems can, in part, be traced to an inability to
manage the actud, as opposed to the percelved, complexity. The basic principle of complexity
management is often expressed by the mnemonic KISS (Keep It Smple, Stupid), e.g. by
maintaining transparency of sructure. However one must be aware of the danger of not
meking too many smplifications such that the solution becomes smpligic and hence
unworkable.

5.1.1 Connections

Complexity can, in part, be managed by consdering the means by which the parts of the
system are joined together.

Cohesion

A component is said to exhibit a high degree of cohesion if the dements in that unit exhibit a
high degree of functiond relatedness [Sommerville 1992]. A cohesve object is one where a
sangle entity is represented and dl of the operations on that entity are included in that object.
Cohesion is a degrable characteristic for both the design and the maintenance phases of the
system life-cycle.

Coupling

Coupling is an indicetion of the srength of interconnections between units. Highly coupled
systems have strong interconnections, with units dependent upon each other. Coupling of this
form may be needed to create an integrated system with emergent properties (see Section
5.6). Loosdly coupled systems are made up of units which are independent or amost
independent. Coupling of thisform is needed when two (dissmilar) systems need to harmonise
with each other.

5.1.2 Abstraction

Ancther way of keeping control over the system and its design is the use of abgiraction, i.e. to
produce a design (of adesign) of adesign. Although this can be difficult to do for the first time,
because the thought processes are quite different from those normally taught and used, the
results can be very smple and are often considered ‘obvious by those who only read them

February, 1998 Page 19
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

and have not participated in their cregtion. This is the gpproach recommended within these
Guiddines

5.2 Consistency

A system architecture is congtructed from a number of disparate architectures and other
satements. In order that they coalesce correctly it is necessary that they are both sdf-
congstent, and consstent one with another. There are only a few techniques to assg in this
task, e.g. the PASSPORT Cross (see Appendix P), and even this should be supplemented by
aformd Review.

5.3 FElexibility

Norma desgn techniques are based on the possesson of a full and complete st of
requirements, and am to produce a product that will satisfy these requirements. This is the
deterministic gpproach. A system architecture however, is a description of a class of solutions
and the more requirements that are fixed, the smaler the number of possble solutions that can
satisfy them. We need a methodology for the development of system architectures that will
ensure the possbility of a non-deterministic gpproach when developing a number of
compatible ITSs, each satisfying their own loca conditions. It is therefore essentid to identify
the minimum st of fixed assumptions that are necessxy to describe the ITS. This is
particularly important a Levels 2 and 3 where each decision taken may limit the choices
avalableat Levels 1 and 0.

Each system needs to be flexible to meet the varying demands of the system clients, and to be
able to respond to the dress of a changing system environment. However, underlying this
desire for flexibility is dso a dedre that once a function has been provided, the system will be
stable and predictable in its configuration. Thus flexible systems must be built upon stable
architectures. An architecture provides a foundation for a class of sysems with a set of
possible functions, dthough this set does not need to be fully defined; lowever, if a new
function is required thet lies outsde this set, then it is the architecture itsdf which must be
changed.

Since the above argument is sometimes seen to be counter-intuitive we give the following
anadogous example. A human being is based on afixed architecture which includes a Skeleton,
muscles, vita organs, etc. This architecture provides a class of systems, namely the human
race, each member of which is unique (flexible cregtion). Each system itsdf is dso extremey
flexible, being able to perform a multitude of functions (eg. reading a book, driving a car,
etc.). There are, however, some functions that cannot be performed efficiently using this
achitecture, for example catching mice. If this additiond function is required it will be
necessary to include parts of the "cat" architecture in that of "human’. This modification should

February, 1998 Page 20
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

not be undertaken lightly, and a better solution might be to obtain a separate system that only
conformed to the "cat" architecture.

A system architecture therefore provides the means of achieving controlled flexibility, i.e.
flexibility within aset of known condraints. Thus whilst the choice of technology can usudly be
omitted from the system architecture and left until Level O, the partitioning of the system into
ub-systems, and how they are connected will have a profound effect on dl future possble
development paths. All the influences that one sub-system may have upon other sub-systems
must be identified and captured in the system architecture. It is usually assumed that the use of
software provides dmogt unlimited flexibility in the development of asystem. In fact thisis only
true before any software is written. As soon as any code emerges it will carry a set of
assumptions, and from this point onwards the software will only be flexible within these
assumptions. In a smilar manner the integration of sub-systems will carry with it a set of
assumptions. By defining these assumptions in a system architecture it is possble to ensure
flexibility in a desired direction. A system architecture therefore provides a stable basis for
flexibility for the entire life cycleof an ITS.

5.4 Maintainability

Closdy relaed to flexibility is the concept of maintainability. It is a common phenomenon that
large, complex g/stems are never finished, need congtant attention and change continuoudy:
this phenomenon can be expressed as “the only congtancy is change’. It is important to
understand the digtinction between flexibility and maintainability.

Hexibility is a measure of the number of implementation choices that are possible to cater for
different environments, objectives, users, optimisation criteria etc. Mantainability is a measure
of the amount of effort, money, time, education and training of staff, etc. necessary to bring the
system from the current state to the desired state, without mistakes being made. It is therefore
perfectly possble to cregste a system that is flexible but difficult to maintain, for example, a
system made of heterogeneous components and/or strong internd coupling. Maintainability can
be improved by adding functiondity to the system, which will assst specificaly with the task of
maintenance.

5.5 Scale enlargement

Experience from dl branches of engineering shows that a paticular class of desgn
(architecture) is only suitable for limited range of system Size. The reasons are varied, the most
obvious being an increase in complexity that eventualy becomes unmanageable. On occasions
some laterd thinking is needed in order to predict the problem, though it will often be
"obvious' once it has been identified. Thereisa'rule of thumb" that states:

"Any time the sze of a sysem is enlarged by a factor of two, a completdy new kind of
problem should be expected".

February, 1998 Page 21
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Scde enlargement is of particular importance to trangport information and control systems
because they will sart smdl and will grow in many dimensons smultaneoudy. These will
indude:

geographic growth: as the system expandsin physica areg;

functiond growth: as the new functions are added;

growth in the number of data dements. as the functiondity increasss it is likey that
additiond types of datawill be needed;

growth of data volume: a naturd consequence of the geographic and functiond growth;
growth in the number of users anatural consequence of the geographic growth;
growth in the number of user types. anaturd consequence of the functiona growth.

An important issue here is that the individual growths are related and feed on each other,
leading to a sort of exponentid expandon which, in turn, may lead to undesirable
consequences. A good example of thisis the Internet, which not only has longer waiting times
as the number of users increase, but it can be very difficult to find useful information from the
amorphous mass, due to the limited number of keywords available in any one language.

The consequences of any scae enlargement should be identified and planned for a an early
gage in the system development if a good system is not to expand into a bad one.

5.6 Emergent Properties

An emergent property is one that comes into existence because of the way the parts of the
system have been integrated; it cannot be dlocated to a particular part, eg. the property of
"trangport” in a car cannot be alocated to any of the car's components, just to the whole
system. The natura place to consder emergent propertiesis a the architecturd level.

Emergent properties can be both desired and unwanted, and the unwanted one are likely to be
unexpected. Whilgt this makes them even more difficult to find, especidly those connected
with the behaviour of the system, every effort should be taken to do so. Examples of unwanted
emergent properties include:

Vibraions a combined structure will have different properties from its component parts
Electromagnetic interference

Corrosion

Noise: related to vibrations

Response times: see dso Scade Enlargement (Section 5.5)

February, 1998 Page 22
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

5.6.1 Controllability

The essence of the development of a control system is that it should be able to perform its
control functions, and that the control system can be controlled by the system operator in a
proper manner: i.e. “control of the controlled system necesstates control of the control
sysem”. The violation of this rule can lead to systems that run out of control. Thus
controllability is an emergent property of the control system and has to be addressed as such.

Loss of control can occur as a result of loss of sensor information or actuator action, due
ather to therr own fallure or through loss of communications, power failure etc. Consderation
must be given to the training of operators in the case of falure. Whilst the control system
should, of course, be kept as smple as possible (see Section 5), the creation of a separate
Control Architecture can help to provide clarity.

5.7 Multi-disciplinarity

One of the consequences of the modern education system is that people tend to be expertsin
one discipline, and have little knowledge of any other. Thisis sometimes cdled the “inch wide,
mile degp” syndrome. When such a person is placed in charge of a multi-disciplinary
development, he or she has a naturd tendency to give high priority to his or her domain to the
detriment of the others. Most ITS will have multi-disciplinary aspects, and the system architect
must overcome his or her prgudices, undersand the various viewpoints, and come to
balanced decisons. Rdlated to this phenomenon, and associated with the issue of emergent
properties (see Section 5.6) is the need for someone to oversee the system development as a
whole. This should dso be the task of the system architect.

5.7.1 Hardware and Software

The diginction between hardware and software, and hence thelir implications for system
architecture and design, isnot dways fully understood.

Multiplication and modification

Whilst software and hardware both have to be designed, software is easy to replicate, eg. the
MSDOS DISKCOPY command. Hardware, however, has to be ‘manufactured’ each time a
new copy is needed. Hence any changes that may be proposed for hardware are normaly
thought out very carefully because their consequences are usudly obvious and greet.
Meanwhile software is seen to be easy to change because it is much easer to didribute;
indeed this is often the reason why a software solution is chosen. However, unless due regard
is given to the additiond complexity available with software, the modification process can
prove to be very error prone.

February, 1998 Page 23
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Failure Modes

The falure mode of many hardware components are often well known and datidicaly
predictable, and they normaly manifest themsalves by a component that has been working
properly turning into one that does not work properly. Software does not fal in this manner;
faults are desgned into the program which then fals every time that part of the code is
executed. In addition it is often possble to date, with a far degree of confidence, that a
hardware product is correct. It is normdly never posshle to say this about a piece of
software, due to its complexity [Jesty 1997].

Software wear and tear

Whilg there is a common understanding of how many hardware components are affected by
wear and tear, and will ultimately wear out, it is rarely recognised that an analogous process
can happen with some ftware system. It is particularly noticeable with databases. Over a
length of time the data may become obsolete or |oose accuracy, records that should have been
deeted are ill there, records that should have been updated are ill in the old version, and
records containing Smilar information have not been updated in a dmilar manner. Such
‘database pollution’ can lead to an overdl reduction is the effectiveness of the database, i.e.
software wear [Neumann 1995].

5.8 Verification &Validation

At dl gagesin the cregtion of a system, and a system architecture, consderation must be given
as to how it will be tested. A good system architecture should identify well defined sub-
sysems with clear interfaces to facilitate a well ordered testing process to be undertaken
during the system development, thus fadilitating the gaining of the necessary leve of confidence
that the system will both perform correctly in its current form, and after any enlargement (see
Section 5.5). The system architecture must dso alow for the ready replacement of any sub-
system or component that was found to be faulty.

5.8.1 Testability

One consequence of the existence of emergent properties (see Section 5.6) is that they can
only be vaidated by testing the entire sysem. This is sometimes cdled “The Aeroplane
Principle’:
“You can test the parts as much as you like, but the only way to see whether the
aeroplaneisabletofly istolet it fly”.

In fact the Stuation is worse because, due to the complexity and scale enlargement issues, a
no single paint in the deveopment life-cycle can alarge system be fully tested (ignoring the fact
that software cannot be tested exhaudtively anyway). It is therefore essentid that testability
should be bult into the system from the beginning, and hence be a dominant feature of the

February, 1998 Page 24
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

system architecture. Plans will also have to be made to vaidate those features which cannot be
tested directly.

February, 1998 Page 25

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6. SYSTEM ARCHITECTURE DEVELOPMENT

Normal design techniques, and the life-cycle models that incorporate them, are based on the
assumption thet it is possible to obtain a full and complete set of requirements, and produce a
product that will satisfy them. This is the deterministic approach. A system architecture
however, is adescription of aclass of solutions, and we need a non+deterministic approach to
the development of system architectures if we are to be able to creste a multitude of
competible 1TSs, each satisfying ther own loca conditions. This section describes the
production of system architectures during the life-cycle, and Appendix A contains a possible
contents list for a System Architecture Ddliverable.

Whilst it isnormal to show the processes needed for the development of a system in terms of a
life-cycle mode, such models can only highlight certain feetures. One common life-cycle model
for systlems, used to emphasis the verification and vaidation processes, is the “V modd”
shown in Section 7. Another common life-cycle for systems is known as the “waterfall mode”
concentrates on the development process, and it can be expanded to show the phases when
the system architecture is developed.

Figure 6.1 is based on [Rechtin 1991] and shows the main externd influences on the various
phases of the life-cycle. The shaded section has been expanded into Figure 6.2 upon which
the remainder of this Section will be based. It is important to note whilst reading this section
that, although it has been written in a sequential manner, some of the processes may run in
pardld and they may dl need many iterations before a satisfactory solution has been reached.
Examples of the output of each stage of the system architecture life-cycle can be found in the
case study (see Appendix T).

Many sysems will not be created on a""green fidd" dte, and will require existing systems to be
integrated with the new systems. System Architecture has an important role in this Stuation,
which is discussed further in Section 6.10.

February, 1998 Page 26
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

User Needs

\

System Concept
System Requirements

System Architectur e

\

System Engineering
Domain Specific

Engineering
_ Detailed Design
Social &
Palitical \
Factors Development
Manufacturing
Production
Quality \
Reliability :
Sefety Testing
Survivability Certification
Acceptance
Operation
Diagnosis
Evaluation

\

Adaption

System Growth

System Evolution
REAL —//////////,/,//’/”’/////
WORLD \

Decommissioning

Figure 6.1 - Expanded Waterfall Life-cycle.

February, 1998
Issue 1.0

Page 27

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Problem Owner + _ _
Experts o ™
== r \
Users 7~ Ui \
—————————— Se \
| _Azjz==—=zz-— =P, System Concept en .
rt L
€
S|| L __ _______ e » r
YOzl == == === =K, System Characterigtics ¢ Na
S vt
t)i I
e E O Vv \
T||m System Requirements « : | € :
r
————————— = % Functional pe = |
a
f‘&"-————f—-—_- -’Requirements en I'e |
|| o« |- —|lmolementation Constraints \ _, : rt e
fs T T T U View__ _ Non-Functional te 7 d
i|loH_—FC - - - ____—__-72 Requirements b !
clls Quality Requirements d |
t 3 !
El|lw k!
ni|a Level 2& /
gllr Reference M odel /
i|le /’
n
el|E Level 1
ern Ar chitectures
119 Functional == Infor mation
s||i
n Control
e Level 1
? / Architectures
| | Safety _/ -
s Model — === —_ Prygea
| [o]- _ SgemFacos _ < Desicn
Service Providers |

Figure 6.2- System Architecture Development within the System Life-Cycle

February, 1998
Issue 1.0

Page 28

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6.1 User Needs

The firgt three stages of the development of the system architecture are oriented around the
needs and expectations of the user, thus:.

User needs - the unsatisfied dedires
System concept - the proposed solutions
System characteristics - the main features of the proposed solutions

The needs of the user can be expressed in a number of different ways from asmple “wish ligt”
to a forma satement of “User Requirements’. User Needs when expressed as a ligt of
desired functions can often end up being quite detailed, and there is dways a danger that they
may be inconsgtent, especialy when they have been gathered from more than one source.

An dternative approach is to express the needs of the user in the form of the Services that the
user will wish to receive. These are a high-level form of user needs which will have to be
decomposed into functions later in the development life-cycle. See dso Section 6.7.

In addition to gating what services or functions are needed, the User Needs are d o likdy to
state how the user wishes to recaive those sarvices or functions. They may dso vary in thar
level of abdraction, with some affecting the high-level System Concept, and others affecting
the low-levd detaled design.

The SATIN Task Force produced a set of high level user requirements for European ITS
[SATIN DOO7-PT1].

6.2 System Concept

Is it necessary for everyone involved in a project to have a dear understanding of what is
intended to be done and why. An effective way to achieve this is by the key personnd
encgpaulating their idess in a few sentences so that the entire team may refer to them a any
timein order to ensure that it is maintaining the top level objectives.

One of the specific features that must be clear as a result of this exercise is exactly where the
system boundary lies. The exercise requires the identification of tha part of “anything and
everything” that lies ingde the system, and thus subject to the system architecture, and the
remainder that lies outsde the system, and hence may be effected by, or have an influence on,
the system.

It should be noted that, dthough the forma output of this exercise may only be one or two
pages long, the performance of the exercise may take some time. This must not be trested as
an undesirable overhead, since the need for a long discusson probably indicates a potentid
conflict of ideas within the team.

February, 1998 Page 29
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The key issues to be consdered are:
WHAT should the system achieve?
WHO are the various persons who will be affected by or have an impact on the system?
HOW does the team propose to produce the system?

6.2.1 Vision Statement

This should be a statement of WHAT it is that the system should achieve. It should be possible
to capture the main essence of the system in about two sentences.

6.2.2 ldentification of the Users

It is important to identify and categorise dl the various persons who will be affected by, or
have an effect on, the fina system. There are four different categories of the user who may
ather affect, or be affected, by the sysem. For Information Technology (IT) systems they
have now been given the following titles

Want IT - The service providers want the system to solve (or diminish) traffic problems,
or to provide information services to the public.

MakelT - Component suppliers will deliver hardware and software components for the
sysem. System integrators will combine the components into a complete system.

UselT - The primary users will benefit from the output of the sysem. The secondary
userswill control the system and provide inpt.

RulelT - Thelocd authorities have the responghility for issuing the regulations on how to
implement and use the system. The internationd authorities may dso issue regulaions, as
well as standards and recommendations for international inter-operability.

A check must be made to ensure that dl the users associated with the system have indeed
been identified. For ITSs (see Figure 4.1) the Problem Owner is likely to be an arm of local or
national government who is trying to provide a solution with the advice of its Traffic Engineers.
It will be normd for this authority both to pay for the syslem and to manage its operation, as
consequence it is likely to have a strong influence over the User Needs/Requirements. An
dternative scenario is for the private sector to identify a gap in the market of the services that
could be provided, and produce a system for sde ether to the traffic authorities or directly to
the generd public. The system and software engineering Experts will work closdy with the
Problem Owner and the Traffic Engineers during development of the system. It should be
noted that, whilst they are experts in System or Software Engineering, they are unlikely to have
a full knowledge of the application. It is therefore vitd that there should be a sympathetic
interaction between the Problem Owner and the Experts: in particular the Experts will bring
knowledge of experience of other systems, possibly not in the transport field, with lessons that

February, 1998 Page 30
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

can be applied to the proposed system. The Problem Owner must be receptive to
suggestions. Once the system has been commissoned it is likdy thet the Experts will have
completed their contract. Effective plans must therefore be made for the maintenance of the
sysem throughout its lifetime in particular it must be recognised that even if the same
organisation of Expertsis used, it is most unlikely tha the same individuas will be used. The
consequence of this is that specific atention must be given to documentation both during the
development and the maintenance parts, and this must be specified early in the life-cycle, and
hence be part of the system architecture.

The rdationship between the Users and the Service Providers will vary depending on the
goplication. An enforcement system imposed upon the generd public will be consdered in a
very different manner to a commercia system providing facilities for which the user has to pay.
Indeed it is possble to envisage the Service Provider having quite different criteria for the
“working” and “workable” objectives to those of the Users. It is arequirement of the system
architecture to reconcile those differences in perspective.

6.2.3 Mission Statement

This should be a statement of HOW the team proposes to produce the system. It should be
possible to capture the main essence of the process in about two sentences.

6.3 System Characteristics

Based upon the user needs and the system concept, the various experts should write down the
desrable characterigtics of the system. Although many of the statements are likely to be
quditative at this stage, it is important that dl the agpects of the system are considered by dl

those who have an affect on, or will be affected by, the sysem (see Appendix D for a
checkligt of those issues that should have been considered). The system characteristics will

provide a description of the properties that the resulting system(s) should exhibit.

This gage investigates the main features and properties which follow from the system concept.
The am is to promote a full, multi-disciplinary understanding of al the characteristics of the
system by the system and domain specific engineers. CONVERGE-SA is not aware of any
specific methodology for this task, text will be sufficient in many cases, sometimes diagrams
may help. A good starting point for ITS may be found in [SATIN DOO7-PT1].

6.4 System Requirements

With the variety of categories of users, each with a different interest in a proposed ITS, one
can expect the capture of the user needs to be fraught with difficulty. The fina collection is
likely to be incomplete, inconsstent and vary widdy in ther leve of detall, especidly snce the
contributors are likely to have a wide variation in knowledge of what might be possble. The
system requirements, however, need to be consstent, and as complete as possible. During the
process of transforming the user needs and the system characteridics into the system

February, 1998 Page 31
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

requirements inconsstencies and omissons must be identified and reconciled. Some of the
user needs will affect the system architecture itself, eg. reconciliation of god conflicts, whilst
others will be reflected in the functional and non-functiond requirements of the later phases of
the development.

The sysem requirements are (semi-)forma statements about the objectives of the system,
possibly written in some (semi-)formd language or diagrams. Whilst the user needs an system
characteristics will have been expressed in terms of what is wanted, the system requirements
specify how it will be achieved.

Three broad categories of requirements for ITS have been identified [SATIN D007-PT1],
and are shown in Figure 6.3:

context requirements (formaly referred to as "Introductory Requirements') - these specify
the reaction to the congtraints imposed by the environment on the introduction of the system
They may be assumptions about that environment, or statements as to what is needed
within the environment (see Appendix E).

functiona requirements - these specify the service(s) that will be expected from the system,
and/or the functions needed to provide a working system (see Section 6.7 and Appendix
F).

non-functiond requirements - these specify the performance and/or qudity attributes of a
workable system (see Appendix G).

System
Requirements

Functional &
Non-Functional

Figure 6.3 - Functional, Non-Functional and Context Requirements

Whilg this categorisation is possbly subject to argument, the important thing is to ensure thet
al the syslem requirements are captured, and not the heading under which they are listed.
Indeed since mogt high level non-functiond requirements will be later expanded into low level

February, 1998 Page 32
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

functiond requirements, such categorisation is, to some extent, arbitrary though the headings
do indicate the thought processes that should be undertaken to ensure completeness.

Initidly the system requirements can be identified as being a direct consequence of the user
needs, the system concept and the system characteridtics, i.e. the “primary system
requirements’. However the technica experts will dso identify another set of requirements
(e.g. safety requirements) that will be necessary to create a working and workable system for
the primary system requirements, these are known as the “derived system requirements’. For
a sysem as wide ranging and complex as an ITS it is likdy that persons from a number of
different areas of expertise and knowledge will have to contribute to the process of collating
thetota set of system requirements.

6.4.1 User Needs vs. System Characteristics vs. System Requirements vs.
System Specifications

User needs emanate from the users and are entirely user oriented. They will not necessarily be
consgtent, and are likely to be expressed in plain text with informd diagrams. Completenessis
measured in terms of the numbers and types of users who have contributed.

System characteristics are ds0 user oriented and expressed in plain text with informa
diagrams, and permit the users to embellish the user needs, which may be lacking in detall.
They gart from the user needs and the system concept but as well as receiving contributions
from the users, they dso bring in the experience of system engineers and system architect(s)
who have worked on other systems. It is not necessary for the system characteristics to be
entirely consgtent, but the most obvious inconsstencies in the user needs should be removed.

System requirements are sysem and implementation oriented, and will use (semi-)formd text
and diagrammatic techniques to capture dl the requirements; they will not necessarily be easy
to read by the users. They should be consstent and tracesble back to the system
characterigics. The primary requirements will come from the user needs and the system
characteridtics, but in addition the system engineers and system architect(s) will add derived
requirements to provide the working characterigics of the sysem. Whilst the system
requirements may be used to test the resulting system, many of the detalled implementation
issues may not have been decided, i.e. they may be technology independent. Figure 6.4 shows
the difference between the system characteristics and the system requirements.

February, 1998 Page 33
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

System Characteristics

System Requirements

Main purpose Basis for requirements System devel opment

Secondary purpose |dentify assumptions Articulate assumptions

Orientation User (domain expert) System

Origin recognition Submitting user identified Not necessary

Organisation User, system parts, Context, functiond, norr
functiondity, behaviour functiond

Coverage Anything deemed rdlevant Process and product

Internal consistency Not necessary Necessary

Completeness For each user For the system

Type of mediator Domain & system experts System engineers

Character of mediation Understandable, readable Exactness

Type of presentation Text, Imple figures, tables (Semi-)formd descriptions

Character of presentation Undergtandable Implementable

Main point of view User dedirability System feashility

Limitation Time redtrictions Cost of implementation

Figure 6.4 - Difference between System Char acteristics and System Requirements

Sysem specifications are system oriented and represent in detal how the future
implementation will work. They represent one of the possble manifesations of the system
requirements. They are usudly only reedable by specididts as they should be written in (semi-
)forma specification languages and/or diagrams which are rich in semantics and rules for
internal congstency, and form the bass for detailed testing. The system specification form the
input for the operator manud, user documentation, training manual, maintenance manua etc.

6.5 System Boundary

Once the system requirements have been identified a diagram should be drawn which shows
how the proposed system relates to its immediate environment. For a pure telematic system

which is only processing data and providing information, this may be done effectively using a
Context Diagram which can then become the top-level Functiona Architecture (see Appendix
L).

For any sysem which acts directly or indirectly on its environment, eg. to provide traffic
management, the diagram should contain more information that is possible in a Context
Diagram. It is recommended that a PASSPORT Diagram is used [PASSPORT 95] which will
not only permit quditative completeness and consistency checks to be performed, but it isaso
possble to andyse the top level functiona behaviour of the system, and to peform a
preliminary safety andysis (see below). Experience with the PASSPORT Diagram during the

February, 1998 Page 34

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

DRIVE Il programme demondrated that it was extremey useful to create it as soon as
posshbleinthelife-cycle.

6.5.1 Preliminary Safety Analysis

Any system that has sufficient power to advise or to control road safety, transport efficiency or
environmenta quality might exercise that power for either good or ill, and the latter condition
could be quite disastrous in the worst case. Developers naturaly concentrate on the benefits of
their system, especidly when communicating with ther financia supporters, private or public.
However, in order to ensure that their systems do indeed only provide the benefits thet they
desire, and do not cause any undesired effects, a responsible developer should execute a
series of processes to confirm the overal safety of the system. The firgt of these processesisa
Prdiminary Safety (or Hazard) Andyss in which “What if ...7" questions are asked of the
proposed system in order to discover whether any possible falure of a part of the system
could produce a safety hazard (see Appendix H). An andysis of the results of a“What causes
...7" andysis on each hazard will provide the top-level safety requirements, part of the derived
requirements.

6.6 Level 2 and 3 System Properties - Reference Models

The reference modds are the area where the context, functiona and non-functiond
requirements are sudied in their entirety, and where the optima drategy for interrelated
implementation of the requirements are proposed. During the later stages of development staff
will ded with particular parts, and hence a sub-set of the requirements only.

A system can be divided into two main domains, the functions that produce the god, and the
control of those functions. It is sound engineering practice to keep these two domains distinct
and separate in order to maintain amplicity of design. Levels 2 and 3 are mainly concerned
with the control domain and are usudly described in terms of Reference Modds. The most
common dgructure is a layered Reference Mode (see Fgure 6.5) in which the various
functions of the system are each dlocated to a particuar layer such that:

eech layer may take input data for transformation from lower layers or from the
environment outside the system';

eaech layer may generate commands for itself or for lower layers,

output data may be sent to lower layers for display or transmisson to the environment
outsde the system, but not for transformetion;

! Sometimes it may be advantageous to use the reference model as the nucleus of the system in a
PASSPORT Diagram. In this situation data input and output should be shown at the logical level, i.e.
where the data is used/created, and not where it enters the system.

February, 1998 Page 35
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Functions A and B

FunctionsP, Q and R

Functions X and Y

Figure 6.5 - Example of a Three Layered Reference M odel

the number of layers will vary between Reference Models, though experience shows that
few systems need more than Sx or seven layers to represent their full functiondity, though
additional layers may be needed to improve the behaviour, e.g. for security.

To facilitate the comprehenson of this concept, it is useful to refer to some well-known
examples of Reference Models such as the Open System Interconnect (OSl) reference model
[Zimmerman 1980], or the Computer Integrated Manufacturing (CIM) reference modd [1SO
CIM]. Both are outstanding examples that have been gpplied in whole, or in part, to large
systemns with a fair degree of success. They describe the main structures of the system. The
desre for dructure is obvious. a system has to have some internd structures and the
fundamenta ones form the basis of the system architecture. This gpproach leads to:

a family of systems - a s&t of systems with many common fesatures. This can lead to a
reduction in cost by the use of common components.

inter-operability - sysems with a common internal structure are nore likely to work
together in a successful manner.

simplicity - a reference mode contributes to an understanding of the system by both
engineers and users. For the engineers this enhances the communication between them and
helps to avoid hidden assumptions dipping into the sysem design. For the users this
provides the basis for a conastent menta mode which will aid effective and safe operation.

stability - most ITS are expected to continue in operation for many years, whilst at the
same time being modified to suit a changing environment and/or user demands. A well
formulated reference modd will enable dl these changes to take place within the system
architecture and thus maintain a basic stable view for both engineers and users.

flexibility - reference models do not impose any unnecessary congraints on the design of
the system, or on the technologies that may be used in the design. They permit flexibility,
indeed support it. Thus reference models describe, rather than prescribe.

A layered reference modd delinestes the leves of jurisdiction within the sysem architecture.
Although there may be a number of reference models a Levels 2 and 3, each deding with a
sngle issue, normally they are combined into one modd for each leve. The reference models
are necessary because a system as large and complex as an ITS is unlikely to have one single
central point of control. The reference moded therefore indicates how the various types of

February, 1998 Page 36
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

control are divided throughout the system. Whilgt the reference modes at Level 2 and 3 both
cover the same issues, those a Level 2 may be easer to reconcile under a single Authority,
than those a Level 3 when a consensus must be obtained between Authorities.

Layered reference models have aready been produced by the SATIN Task Force for Urban,
Inter-Urban and In-vehicle IRTE ([SATIN AC13-PT7] see also Appendix J). Road transport
projects are strongly recommended to use them as a garting point. Although it will be
necessary to confirm that they are suitable, their existence should mean that projects will not
have to re-create their own individud reference model(s) from scratch.

Reference modds must satisfy a number of requirements, in particular the dlocation of
respongbility and zones of autonomy. Further discussion on this subject can be found in
Appendix I.

6.6.1 Responsibility

Management

The ease by which a sysem may be managed will depend, to a great degree, upon the
dructure of the system architecture. It is advisable for the top level control structure of the
system to be reflected in the structure of the management, or vice versa. Where a number of
organisations are co-operating it may be useful to create an Enterprise Architecture in addition
to the Reference Model (See Appendix K).

Many of the components, or sub-systems, of a sysem may have their own objectives, or
gods, which may not dways be in harmony with each other. The sysem architecture must
therefore reconcile, for example, the desire of the individua motorist to get from A to B asfast
as possible, with the traffic controller's wish to maximise the throughput on a particular stretch
of road; or ese the necessity to minimise the journey time of emergency vehicles, with adesre
for traffic cdming in resdentia areas. The reconciliation process may need some changes to
be made to the system requirements.

Safety

The Reference Modd should identify the dlocation of responghility for the various types of
safety functions throughout the system architecture in a consistent manner.

Security

It is norma practice to impose layers of security around any system that contains persond or
sengtive information. The Reference Modd should identify these layers within the system
architecture.

February, 1998 Page 37
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6.6.2 Zones of Autonomy

It is not sengble to assume that dl parts of alarge IT system will be operating perfectly dl of
the time. Indeed some studies have shown that many large systems spend most of their
operationd life in one falure mode or another [Neumann 1995]. Consideration must therefore
be given, within the architecture, to the degraded modes of operation of the system. Thisis of
particular importance for those pats of the sysem that hedp maintan a safe Studtion. In
addition corrective and preventative maintenance will require parts of the sysem to be
switched off or disconnected, and the system architecture must permit the safe operation of the
remainder of the system during thistime, abeit possibly in a degraded mode.

There are two particular issues that must be considered and reconciled within the reference
moddsin order for the zones of autonomy to function correctly. Different functions, or classes
of function, will be dlocated to different zones within the reference modd. It is recessary to
ensure that the flow of data and the flow of commands necessary for the correct operation
of these functions will be maintained in any planned degraded mode of operation.

6.6.3 Production of a Layered Reference Model

1. Choose a number of layers (five, say, a the Sart of the process), and dlocate hierarchica
management, safety and security tasks to each of the layers in a consgstent manner. Note
that dthough a mgor task may be dlocated to more than one adjacent layer, each layer
should be different from its neighbour(s) in some manner.

2. Allocate the functions identified in the functiond requirements to each of the layers.

3. By congdering the flow of data, and the flow of commands between the functions, check
that the following rules have been obeyed:

the dlocation of functions in Step 2 conforms to the management, safety and security
hierarchy chosenin Step 1.

each layer may take input data for transformation from lower layers or from the
environment outside the system.

each layer may generate commands for itself or for lower layers.

output data may be sent to lower layers for display or transmisson to the environment
outside the system, but not for transformation.

4. Repeat Steps 1 and/or 2 and/or 3 until there are no inconsstencies. Note that it may be
necessary to change the number of layers (sometimes it may be necessary to split alayer in
two in order to isolate a particular function so that it may be developed at a higher level of
integrity by a specidist development team, e.g. for safety or security).

February, 1998 Page 38
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6.7 Level 1 System Structure - Functional Issues

Once the Leve 2 (and 3) control domains have been fixed, the Levd 1 functional domain can
be consdered. The Leve 1 Architectures define the kernd of the main structure of the system,
and how the sub-systems relate to each other. There are many different attributes that need to
be consdered when cregting an integrated system and the main ones will each have their own
architecture. The activity of the system is described in terms of WHAT the various sub-units
will do so that, together, they create the god oriented “working” atributes of the system

Architecture (the Leve O Architecture, or design, will provide the details of HOW the sub-
units will be implemented). Naturdly each Leve 1 Architecture must conform to the Leve 2
and 3 reference models and be consistent one with another.

Technology Independence

It isnormal for aLeve 1 Architecture to be “technology independent”. By this one means that
where there is a choice of technologies that may be used, this choice should be maintained until
the Level 0 design is started. On rare occasions the technologies available to perform a service
are 0 different that the choice will affect the Level 1 Architectures. In this Stuation, of course,
itwill be necessary to include a“ Technology Architecture’ at Leve 1 that specifies the choice
taken, and the reason for that choice.

Services and Functions
One definition for asarviceis.
"A provision or system responding to some public need’

Most IT sarvices have a common information flow down a chain of functions as shown in
Fgure 6.6. Thefive functions are:

Monitoring of data
Processing of data
Decison process
Dissemination process

Reception

Information flow

e

g m Reception

Figure 6.6 - Service information chain

February, 1998 Page 39
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Examples of servicesin the road trangport mode include:
Lane management
Parking space management
Route guidance
On-trip driver information
Park and ride
Trave planning

Each function type isitsdlf afamily of functions. For example Monitoring of data could include
vighility monitoring, pollution measuring, speed measuring etc. Processng of data could
include passenger analys's demand, traffic forecasting, travel planning, etc.

In the SATIN Task Force, a ligt of functions and sub-functions has been produced for the
road mode as an attempt to provide a common bass for functiona descriptions [CORD
D004-PT3]. Mogt of the sub-functions described in thislist can be seen to belong to one the 5
groups described above, while most functions can be seen to be services. This ligt has ill to
be updated as it is only covering the road mode and, for a specidised study of a particular
goplication, it has been recognised that the list does not give enough detall.

6.7.1 Enterprise Architecture

Many ITS either form, or are part of, a business activity. In this Stuation it is useful to create
an Enterprise Architecture to describe this part of the system. This architecture will show the
flow of resources between organisations, persons, services and/or functions. Each element in
the Enterprise Architecture may be subject to congtraints or rules which should be specified.
See Appendix K.

6.7.2 Logical Model

Functional Architecture

Sating from a Context Diagram, or otherwise, the Functiona Architecture should be
produced by the process of functional decompostion. Thiswill show the flow of data between
functions and sub-functions, and the data sets that are needed. See Appendix L Road
transport projects are recommended to use the CORD List of Functions [CORD D004-PT3]
asthe bassfor their functions and sub-functionsin their Level 1 Functiond Architecture.

In order to take advantage of the structure provided by the layered reference modd, it is
possible to use a separate Context Diagram for each layer.

February, 1998 Page 40
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

I nformation Architecture

The Information Architecture defines the structure of the data sets showing the reationships
between the various items d data. Where the ITS requires a large database of information,
congderation should be given to the production of afull data modd. Particular care should be
taken for digributed systems that involve more than one controlling organisation to ensure
consistency between the various definitions being used. See Appendix N.

Control Architecture

All systems must be controlled, but it depends upon the form and/or complexity of that control
as to whether it is necessary to produce a specific Control Architecture, or to combine it with
the Functiond Architecture. Whilst data driven control may be suitable for some pure
information systems, it is not wise to use this method for safety-related systems due to the
difficulty of demondrating that it will be safe under dl circumstances, e.g. lack of deadlock.
Condderation should be given to usng such modds as the Finite State Machine, or the Petri

Net, or Event Trace Diagrams or What-1f Tables for those systems whose control is at dl

complex.

6.7.3 Object-Orientation

The structured gpproach for the Level 1 Architectures, which is based on decompostion, is
well understood by engineers in the traditiond disciplines, and is one of the reasons why it has
been given prominence in these Guiddines. It is not, however, the only possible approach for
the Level 1 Logicd Modd. Object engineering, which is based on data abstraction, takes a
different gpproach, identifying data objects, or entities, and grouping functions around these.
This gives a Sngle coherent view. It is often seen as a re-packaging of sysems which ensures
minimum interfaces and thus produces more modular systems.

Object engineering garts, like data modelling, by recognising concepts or objects and their
relationships to other objects but ingdead of recognisng functions in a separate modd, it
identifies the functions performed on or by each object. For example a variable message Sgn
may be seen as an object which recelves certain ingtructions from a controller and accordingly
performs the service of digplaying certain items of text. Its internd workings are not known by
the controller, or by the road users, who see the Sgn. The notion of services provided by an
object can be very useful in a high-level analyss of the objectives or benefits to be provided
by the system.

The object-oriented gpproach has become very popular for information systems where there
areclamsfor:

gregter amplicity in system development and maintenance;
localisation of change;

February, 1998 Page 41
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

maximum opportunity for the re-use of components,
good management of variahility;

protection of datafrom illegal access;

better management of complexity.

There are a number of different object-oriented methodologies, each with their own set of text
books e.g. [Priestley 1977 or [Rumbaugh 1991], and many are supported by CASE tools.
Computer science students are now normadly taught this gpproach. An object-oriented
approach has been taken for the Enterprise Architecture in the case study (see Appendix T).
A discussion on the new Standard for Open Distributed Processing (ODP) [1SO 10746] can
be found in Appendix M.

The object-orientation specificdly hides complexity inits modules, and for thisreesonisavaid
method for use a the higher levels of architecture and design. However care must be taken if a
full object-oriented approach is to be taken down to, and including, programming, eg. in
C++. The concept of information hiding, or the use of run-time libraries for performing
complex tasks, should be used with particular care for any system that is safety-related,
because in this case a full understanding of the entire process must be demonstrated and the
provenance of the libraries may be unknown. There is no evidence that object-oriented
technology improves rdiability [Hatton 1997]. It must dso be remembered that object-
orientation, being a software architecture, does not and cannot replace a ful sysem
architecture as advocated in these Guiddines.

6.7.4 Physical Model

Physical Architecture

The Levd 1 Physica Architecture shows the grouping of the functions specified in the Levd 1
Functiond Architecture into physical units, often to provide a “market package’. It may aso
show the location of the physicd units and the communication paths between them [Hatley
1987]. The Physicd Architecture dso shows the didribution of data and whether ether
functions and/or data are replicated to improve performance or provide redundancy.
Normadly, the Physica Architecture should be technology and/or manufacturer independent.

Communication Architecture

The Levd 1 Communication Architecture describes the characterigtics of the various channds
that have been identified as being needed in the Physica Architecture [Hatley 1987].

The communication architecture, part of the physica view, describes the way subsystems
communicate. The communication architecture focuses on the physicd transmisson of the
information between Stes. A communication architecture is related to the physicd architecture

February, 1998 Page 42
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

and each link between spatidly separated sub-systems has to be described in the
communication architecture using the following attributes (non-exhaudtive):

type of communication medium (wire, radio, infrared, visud, €tc.);
physical characterigtics of data flow (regularity, volume, speed, encoding techniques, etc.);

logicd characteridtics of data flow (latency, information composition, etc.).

Condderation should be given to using the OS 7 Layer mode for computer communications
[Zimmerman 1980], snce there are a number of Standards dready extant for handling the
bottom three layers.

6.8 Level 1 System Structure - Behavioural Issues

We need to diginguish between sysem behaviour and sysem functiondity. The system
functiondity is concerned with “what” the sysem is to do, whils sysem behaviour is
concerned with the “manner” in which it is to be done. This will have been specified in the
non-functiond requirements. In generd a system function can be tested during development.
System behaviour covers those properties which are important but can only redly be validated
by use. Such properties include performance, safety, security and system interface (e.g. user
friendliness). For example, software products from different suppliers may be identica in ther
functiondity, neverthel ess these products may differ greetly in their behaviour; eg. ease of use,
degree of configuration possible, fallure rate, resstance to user erors, assistance provided,
and look and fed. These differences can become extremdy important when one desires to
integrate two software products.

It is during the study of the desired system behaviour that conflicting gods may be identified.
These conflicts must be resolved o that al sysems, and sub-systems, that conform to this
architecture behave in a congstent manner.

The Levd 1 characterigtics of the system identify the behavioura features which, together, will
create the “workable’ attribute of the System Architecture. The features are likely to be
written in textud form, rather than with diagrams, with possble references to in-house
practices, or Guidelines (e.g. [MISRA 1994])

6.8.1 Usability

In Fgure 4.1 and Section 6.2.2 we have highlighted that there may be a number of different
sets of people who will interact with an ITS in some manner or another. The system should be
user-friendly and easy to use by each and every one. There is growing literature on the design
of information screens and control panels in a variety of industry sectors, as well as in the
previous Transport Telematic research programmes.

February, 1998 Page 43
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

6.8.2 Risk/hazard Analysis

It is not sengble to assume that dl parts of alarge IT system will be operating perfectly dl of
the time. Condderation must therefore be given, within the architecture, to the maintenance of
the “workable’ attributes during the degraded modes of operation of the system.

Safety

The safety of the sysem will be provided by a combination of the way in which the functions
are organised within the Levels 3,2 and 1 Architectures, and the processes used to create the
sysem. Sdfety, like quality, cannot be added onto a system, it must be built in. There are
many relevant Standards, Guidelines and Frameworks covering the many aspects of the safety
of ITSssysems (e.g. [MISRA 1994], [EMCATT 1995] and [PASSPORT D9)).

Security

The security of the data within a sysem will, to some extent, be maintained by the control
gructures and data flow given within the Levels 3, 2 and 1 Architectures. Most of the security
will, however, have to be desgned into the rdevant functions. There ae a number of
Guiddines on this metter (e.g. [ITSEM]).

Operability

A system must not only be usable (see Section 6.8.1) but it must remain so under a degraded
mode of operation. Hazard analyses should be performed upon the System Architecture to
confirm the usability of the system in its many possble configurations.

Maintainability

An ITS, especidly one that is successful, is likely to remain in goeration for decades, and
maintenance, dthough not necessarily continuous, will take place during the entire operationd
phase of the system. In order that it may be undertaken in a cost effective manner the system
architecture must take maintenance into account. Corrective and preventative maintenance will
require parts of the system to be switched off or disconnected, and the system architecture

must permit the safe operation of the remainder of the system during thistime, dbet possbly in
adegraded mode.

The maintenance phase of the system life-cycle is when the flexibility offered by the sysem
architecture is put to the test. Sooner or later the environment within which the system
operates will change, and it will be necessary to perform adaptive nantenance so that the
system may conform to it. Indeed it is possible that this may occur during the development
phase as wdl due to changes in requirements. Almost as important as the ability to exist asthe
desired modified system, is for there to be aviable way to go from the previous verson to the
next one. An example of this Stuation is the need to upgrade the software in al the road sde
controllers. The manua change of each one individudly is likely to be extremey expensive and

February, 1998 Page 44
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

error prone, whereas an automatic update via a communication network is likely to be easer
to perform and control.

Some things are easer to change than others. The advent of advanced relationa data-base
management systems permits the ready modification of most data bases. However thisflexible
data trangport over time is not matched by a corresponding flexibility of transport over space.
Daa communication message formats are far more difficult to modify because a least two
ub-systems are effected. Thus the flexibility of data storage may be rendered ineffective by an
inflexible data communication system.

ITSs ae unusud in that they are likdy to expand condderably, both functiondly and
geographicdly, during their lifetime. An ITS sysem architecture must not anly provide the
flexibility needed to perform this expansion, but it must dso be cgpable of supporting any
possible final 9ze (see Section 5.5). Whilgt this aspect is normaly only consdered with respect
to the “working” objective of the system, it is just as important for the “workable’ objective,
gance it is pefectly possble to modify a sysem tha was origindly both managesble and
maintainable in a manner such that the result loses one or both of these attributes.

6.9 Level O -Design

6.9.1 Standardisation

There are a number of standards, draft and pre-standards, as well as guidelines which may be
of benefit to any leve of architecture, in particular Levels 1 and 0. The road transport projects
should contact the project CODE for advice on this matter (see dso [Galllet 1996]).

6.10 Legacy Systems and Migration

Few ITS will be created on a "green fidd" dte, and it will therefore be necessary to combine
some of the old systems with the new system, or to combine two or more existing systems,
together with some enhancements, into a angle system. It should be remembered that dl
systems have a system architecture, even if it has not been formaly written down (see Section
4.1). The problem can be understood by referring to Figure 6.7.

Assumptions Assumptions

Figure 6.7 - Incompatible Systems

Figure 6.7 shows two systems, A and B, which are intending to work together as an integrated
system. Whilst is obvious thet it is hecessary to have an agreed communications protocol, this
is not the only requirement for a working and workable sysem. The many civil wars

February, 1998 Page 45
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

throughout history demondtrate that it takes more than an agreed way of communicating for
people, or systems, to work together properly; they must also have an agreed set of
assumptions as to what is required of each other. It is therefore necessary to have both a
common communications protocol and a common set of assumptions about the manner in
which each system will work in order to produce the working and workable system shown in
Fgure 6.8.

Assumptions

Figure 6.8 - Compatible Systems

The problem when trying to integrate to an existing system is that ether the communications
interface and/or the built in assumptions may not be known. There are therefore two basic
methods of integration.

6.10.1 Compatibility

One obvious way to achieve compdtibility is to discover the system architecture of the old
sysem and then to add the new functions in a manner that conforms to this system
architecture. This may not be as difficult asit might at first seem. It has ways been recognised
that communications protocols must be well documented, so there will only be a problem if
ether the documentation has been midaid or if the origind manufacturer refuses to divulge the
information. Identifying the underlying assumptions thet are built into the old system may be
more difficult because they are rardly documented in an obvious manner. However, it is only
necessary to know the relevant assumptions that directly affect the other system(s), and it may
wdl be feasble to identify whet they are.

There is, however, a fundamenta problem with this gpproach. By definition, the new system
will be created with the architecture of the old system, and it will not be possible to provide
features that are not supported by this system architecture. Thus, whilst it may be consdered
to be the “easy” approach, in the long term the decison to conform to an origindly unplanned
system architecture may be regretted.

6.10.2 New system architecture with interface bridge

The mogt likely scenario is for there to be a need to use some existing systems as part of a
new, and larger, sysem. The new system will have a properly planned system architecture,
whilst the existing system will have been built up in an ad hoc manner. The assumptions built
into exiging system are likely to be at best unplanned, and at worst, incompatible with some of

February, 1998 Page 46
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

the features needed by the new sysgem. In addition it is possble that the origind
communications protocols will not fully support the new desired functiondlity.

In these drcumstances the solution isto create a new system architecture that isin accordance
with the current user needs. This architecture is then andysed with a view to getting a best fit
for the exigting systems into that architecture. It may be necessary to modify the new system
architecture if the fit is not good enough. In these circumstances the changes should be the
minimum necessary because they may curtal the ability to satisfy certain user needs if a dl
possible, they should be restricted to the Level 1 Architectures. The new parts of the system
will be designed to conform to this architecture, but it may be necessary to create a “bridge”
a the interfaces to (some of) the old equipment o that they are seen to operate in accordance
with the new system architecture, possbly with reduced functiondity. The advantage of this
gpproach is that, in the future, the old components can be replaced by new equipment that
conforms to the new architecture and can thus be connected directly to the new system.
Eventudly a completely new system comes into operation and the bridge can be removed.

February, 1998 Page 47
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

7. THE ARCHITECTURE ASSESSMENT PROCESS

Whilgt Figure 6.1 concentrates on the development processes, when the system life-cydeis
viewed using the “V modd” (see Figure 7.1) the checking processes that need to be
undertaken are highlighted. Each step on the right hand side of the V is equivaent to one on
the left hand Sde, thus is it againgt the system design that the system integration and testing are
carried out, etc.. In addition it is possible to carry out verification processes to confirm that the
output of each successve phase is in conformance to the requirements of the outputs of the
previous phase. The architecture assessment process described in this section is made up of
the verification processes needed to ensure that the System Architecture conforms to the User
Needs. Appendix O contains some advice to those who have to review a system architecture
Ddiverable.

User Needs System in Use
\ Validation /

System Concept System Validation
System Requirements = Installation
System Archltecture and acceptance

System Integration

WStem Deﬂgn and Testing
Verification
Module Design v Module Testing

I mplementation
Figure7.1- Smple“V” Life-cycle M odel
7.1 Objectives

The objectives of the assessment process are:
To confirm the functions necessary to provide the ITS services required;

To identify to what extent the architecture contains these functions and supports the
necessary interconnections to provide these services.

To identify the extent to which agiven ITS possesses redundant links and functions. (Note
that this may be intentiond for either safety and/or rdligbility reasons).

To identify any missing or key links between functions that should be provided in order to
produce the selected services.

February, 1998 Page 48
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

To confirm the ability of the architecture to support modifications to its components and/or
changesto its environment.

To confirm the ability of the architecture to lead to implementations that are feasble
technicaly, paliticdly, financidly etc.

To confirm the ability of the architecture to lead to implementations that can be managed,
maintained and useable under degraded modes of operation, and to be safe and/or secure.

7.2 Overview
The assessment process consst of four different types of procedure:

Verification - the comparison of the output of each individua phase of the development
with the output of the previous phase, the objective being to ensure that the output from the
new phase fulfils the requirements specified in the outputs of the previous phase.
Veification dways requires a comparison to be made (eg. test results with expected
results).

Analysis - the use of a technique to demondtrate the properties of particular products of
thelife-cycle.

Testing - The process of supplying a set of inputs, process conditions and expected results
with the intention of finding faults in a product. (Note that testing can only be used to verify
correctness if, and only if, al possble process saes can be tested: this Stuation is
extremey unlikely for atelematic system).

Validation - the demordration that a product satidfies its requirements. Vdidation
requires a decison to be made based on the results of the verification processes and
reviews, aswell as of the tests performed on the system asiit is being integrated.

We have assumed that organisations will have their own review procedures, possibly within a
formd qudity plan; we have therefore not specified how the following tasks should be
organised or managed.

The results of the verification, andyds, test and vaidation procedures provide evidence to the
assessment process. Ultimately a decison must be taken to accept the system architecture
before proceeding to the Design phase of the life-cycle based on the contents of the System
Architecture Assessment Report.

7.3 Project System Architecture Assessment Report

The System Architecture Assessment Report should provide the evidence and justification (or
otherwise!) as to why the architecture will be suitable for the system being proposed by the
project. The Report should contain summaries of each of the activities described below,
providing information both on how they were done and the main conclusons, in sufficient detall

February, 1998 Page 49
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

to judtify to the rdevant authorities a decison to proceed with the further development of the
system. Each project should therefore decide on what type of report will be suitable to their
needs. A possble contents ligt for the System Architecture Assessment Report is given in
Appendix B.

7.4 User Needs ® System Concept

The sysem architecture phase of the life-cycle begins after the User Needs have been
identified. It is these Needs that become the driving force of the remainder of the life-cycle,
and againg which any vdidation is performed.

7.4.1 Vision Statement

The Vigon satement should be checked to confirm that it embraces dl the User Needs.

7.4.2 ldentification of the Users

A check must be made to ensure that dl the users associated with the system have indeed
been identified (see Section 6.2.2).

7.4.3 Mission Statement

The Misson Statement should be checked to confirm that it embraces dl intellectud, technicd,
financid, politica, etc. atributes necessary to produce a system that will meet the User Needs.

7.4.4 The System Boundary

It s vitd tha a condgstent system boundary is used throughout the creetion of the system
architecture and the desgn. It should be possble to identify that part of “anything and
everything” that lies ingde the system, and thus be subject to the system architecture, and the
remainder that lies outsde the system, and hence may be affected by, or have an influence on,
the system.

The firgt definitive statement of the syssiem boundary is likely to be as part of the Context
Diagram (see Section 7.6.1), but it should be checked at this Stage to confirm thet it is ill
consgtent with the User Requirements, Vision and Misson Statements before proceeding to
the next stage in the assessment. This is to help ensure that there will be sdf consstency
between the system requirements and the system boundary, in a cost effective manner.

7.5 System Concept ® System Characteristics

The system characterigtics are derived from the User Needs and the System Concept. A
checkligt of those issues that should have been considered can be found in Appendix D.

It should be noted that a this stage in the assessment the most important attributes are
completeness (eg. that dl the identified Users have been conddered) and feasibility. The
System Characterigtics may not be consstent and will dmost certainly be written at differing
levels of detail; this does not matter.

February, 1998 Page 50
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

7.6 System Characteristics ® System Requirements

The System Reguirements are forma statements about the objectives of the sysem. The
primary system requirements are a direct consequence of the System Concept and the System
Characterigtics. The derived system requirements are those that are necessary in order to
create a working and workable syssem. The three broad categories of System Requirements
are described in Section 6.4.

As digtinct from the Sysgem Chaacteristics the Sysem Requirements should be both
consistent and complete. During the process of transforming the System Characteritics into
the System Requirements inconsistencies and omissons must be identified and reconciled.

The process of ng the System Requirements should proceed in two stages.

a) Verification - agang the System Characterigtics, with the inconsstencies having been
resolved.

b) Validation - against the User Needs.

Specific issues related to the three types of System Requirements can be found in the following
Appendices.

Context Requirements - Appendix E
Functiond Requirements - Appendix F
Non-Functiond Reguirements - Appendix G

The System Requirements should be reviewed to ensure that each issue has at least been
conddered a this stage, the degree to which they have been successfully implemented in the
system architecture will be assessed later (see Section 7.8).

7.6.1 System Context Diagram

There should be a Context Diagram showing the system, its terminators and the flow of data
between them. A number of analyses can be performed

a) System Boundary - the terminators mark the boundary of the system.

b) Completeness Check - acrude, but effective completeness check can be performed by
confirming thet:

What comes out will satisfy the User Needs.

¢) Consistency Check - acrude, but effective completeness and consistency check can be
performed by confirming that:

What goesin is used to create what comes out.

What comes out can be produced fromwhat goesin.

February, 1998 Page 51
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

It isimportant that both checks are performed because they are not the inverse of each other,
as might be thought &t first Sght.

7.6.1.1 Preliminary Safety Analysis

One form of context diagram, but one which cannot be used directly as the top level for
functional decompostion, is a PASSPORT Diagram [PASSPORT D9] (see dso Appendix
H). This has been proved to be particularly useful as the first target for the anayss of an ITS
sysem.

The PASSPORT Diagram was specificdly designed to provide a target for the Preiminary
Safety Andyss (PSA) of ITS systems (see Appendix H). From this andyssit is possble to
derive high levd safety functiond requirements. The initid estimate of the Safety Integrity
Levd (SIL) will provide the initid safety integrity requirements, which will become part of the
non-functiona requirements.

7.7 System Requirements ® Reference Models

There may be a number of Reference Modds a Levd 2 and Leve 3, this will depend upon
how many sub-systems are to be integrated, and upon the number of authorities that have
control over some aspect of the system. A ‘smple sysem entirdly under the control of a
sngle authority is unlikely to need a Level 3 Architecture. The assessment of the Reference
Models should proceed in two stages.

7.7.1 Analysis of Goal-Oriented Functions

The following checks can be performed on layered Reference Moddls:

Each layer may take input data for transdformation from lower layers or from the
environment ousde the system.

Each layer may generate commands for itsdlf or for lower layers.

Output data may be sent to lower layers for disolay or transmisson to the environment
outsde the system, but not for transformation.

Certain sets of lower layers should be able to operate without the avallability of the layers
above them, dbeit with reduced functiondity. If this cannot happen then future maintenance
may be difficult and/or certain safety requirements may not be being met.

7.7.2 Review of Functionality and Behaviour

The Levd 3 and Levd 2 Architectures will begin to implement some of the System
Requirements. A review should be performed on the Reference Moddsin two stages:

i) Verification - agang the Sysem Requirements
i) Validation - against the User Needs

February, 1998 Page 52
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

7.8 Reference Models ® Level 1 Architectures

The Leve 1 Architectures define the overdl structure of the system, and how the sub-systems
relate to each other. The activities are described in terms of WHAT the various sub-unitswill
do; the Leve O Architecture, or design, will provide the details of HOW the sub-unitswill be
implemented. There are four main Levd 1 Architectures, with possbility of two further
architectures for the more complex systems.

Functional Architecture
(Control Architecture)
Information Architecture
(Enterprise Architecture)
Physicd Architecture
Communication Architecture
A review of each architecture should be performed in three stages:
i) Verification - that it conformsto the Leve 2 and 3 Architectures.
i) Verification - agang the System Requirements.
i) Validation - against the User Needs.

7.8.1 Functional Architecture

The Functiond Architecture describes the conceptua structure of the logica behaviour of the
sysem. In order to maintain control over the potentiad complexity of this architecture we
recommend the use of functiond decompostion.

Context Diagram - this should be the diagram from which dl further decompogtion takes
place.

Hierarchicd Set of Diagrams - Each (sub-)function may be split into a number of
(sub-)sub-functions. This process must mantan the sdf-condgstency of the functiond
architecture, and the use of a Computer Assisted Software Engineering (CASE) toal is
recommended.

The CORD Function List [CORD D004-PT3] provides a set of high-levd functions and sub-
functions for road trangport telematic systems, and its use is recommended for dl such
projects to facilitate comprehenson and the identification of commonalities between systems.
The CORD Function Ligt is ds0 the basis of the Functiond Architecture Analyss Tool (see
Section 7.12).

The consstency between the Functional Architecture and Physcd Architecture can be
checked using the PASSPORT Cross (see Section 7.9)

February, 1998 Page 53
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Traceability Matrix

A tracesbility matrix should be created which links the User Needs to the (Sub-)Functions that
will provide them (see Figure 7.2). This matrix should itself be subject to Review since it will
help to provide confirmation that the architecture does indeed achieve dl the User Needs.

Function 1 Function 2 --- Function N

User Need 1

User Need M

Figure 7.2 - User Needs/Functions Traceability Matrix

7.8.2 Control Architecture

The Control Architecture is often incorporated into the Functiona Architecture, however, for a
complex control system it may be ussful to extract this aspect for clarity. The Control
Architecture should be subjected to Peer Review and, if possible, animated with a CASE tool.

It should be noted that the Control Architecture must be incorporated into the Functiona
Architectureif the PASSPORT Crossisto be used (see Section 7.9).

7.8.3 Information Architecture

The Information Architecture is related to the Functional Architecture and, to some extent, the
form of the one will depend on the form of the other. Some characteristics can aso be
influenced by the Physica and Communication Architectures. There are issues associated with
the Information Architecture at al three levels of architecture that need to be reviewed.

Level 3 Issues

It is possble for databases to come under the management of more than one authority. The
respongbility for the avallability and accuracy of the entire system database(s) must be defined
in order to provide a stable basis for aworking system.

Level 2 and Level 1 Issues

There are four main issues that should be consdered for the Information Architecture in terms
of how it may be influenced by the requirements of the other architectures.

Avalability - the generd maintenance of a database (back-ups etc.) can impinge on its
overd|l avalability. Do the requirements of the Functiond Architecture imply above
‘normd’ availability of certain data? ‘100% availability’ is both difficult and expensive to
achieve.

February, 1998 Page 54
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Accuracy - the way that the contents of a database reflect the Stuation in the red world.
There is dways an error introduced during the trandformation of anaogue sensor reading
into digitd data (from where does the Physicd Architecture imply that the raw dataisto be
obtained?). The frequency with which the contents of the database are changed can effect
the timeliness of the data (could the transmission paths implied by the Communication
Architecture create unacceptable delays?).

Didribution - the way that the information is digtributed around the system should be
described. The smultaneous writing of data by many functions needs a different approach
to the smultaneous reading of data Access to a distributed database can take some
consderable time when the indexes and data are in different locations. Increesing use is
being made of World Wide Web (WWW) pages, sometimes WWW can be ‘“World Wide
Wait'!

Security and Privacy - congderaion must be given to the security of commercidly sendtive
data and to the privacy of personal data. Do the architectures present some easy targets for
apotentid intruder?

Level 1 Information Architecture

The Levd 1 Information Architecture describes the structure of each individud database using,
for example, Entity-Relationship Diagrams (ERD). The use of a CASE tool is recommended
to ensure completeness of this architecture, and consistency with the Functiona Architecture.

7.8.4 Enterprise Architecture

A large and/or complex ITS may need to have an Enterprise Architecture described for the
sysem. The dructure of this architecture should reflect the high level Functiona Architecture
so that the divison of responghbility takes place in a natural manner, with no gaps.

7.8.5 Physical Architecture

The Physcd Architecture describes the dlocation of the physica units that will perform the
functions in the Functiond Architecture, and the communication paths between them. The use
of asystematic or structured gpproach is recommended, e.g. [Hatley 1987].

The consstency between the Physicd Architecture and the Functiona Architecture can be
checked using the PASSPORT Cross. It is aso possible to identify criticd and redundant
elements (see Section 7.9).

7.8.6 Communication Architecture

The Communication Architecture describes the characterigics of the various channds that
have been identified in the Physcd Architecture. Each channd must be checked againgt the
corresponding part of the Information Architecture to ensure that it has the capacity to enable
the required data to be transmitted and/or received in the time needed.

February, 1998 Page 55
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

7.9 Checks for Consistency

It is possble to check the consstency between the Function Architecture (including the
Control Architecture) and the Physcal Architecture by usng the PASSPORT Cross
[PASSPORT D9] (see Appendix P. The check is done by performing a set of increasingly
rigorous tests in order to build up confidence. All these tests can be performed manudly for a
smd| system, but as the Size increases S0 does the effort required, and it may only be possible
to peform the more ample tests for a large sysem. A CAE tool is currently under
development in the ESPRIT project COMPASS.

Once the PASSPORT Cross has been created it can aso be used to identify redundant links,
functions and physicd units. Thisisdso described in Appendix P.

7.10 Benefit Analysis

There are many attributes associated with a system architecture which are not drictly
associated with the functions that provide the working properties. The Benefit Anayss
investigates the wor kabl e properties of the system architecture.

Benefit Andysis can be approached in one of two possible ways.

Qualitative Benefit Analysis - Each issue is consdered in turn and a decision is taken as
to whether the system architecture is acceptable in that property or not.

Semi-Quantitative Benefits Analysis - Each issue is consgdered in turn and scored on a
scale of 0-10, say, according to some criteria (these criteria will tend to be specific to the
gpplication). It isthen possible to produce a weighted average of these scores to produce
afigure for the system architecture as a whole (the weights chosen will tend to be specific
to the application and the palitics of the project). On its own this figure has no meaning but
if, by changing one or more features in the system architecture, it is possble to vary one or
more of the scores then the change in the average can give an indication as to whether the
new system architecture is better or worse than the previous verson (see adso Section
7.12).

Appendix Q contains lists of issues that should be consdered when performing a behaviourd
andysds on the system architecture.

7.11 Cost-Benefit Analysis

The god of cost andyssisto produce a high leve estimate of the expenditure associated with
implementing the physcd dements of the architecture. A detalled andyss would dso include
discussons about funding sources and the expected pay-back period. Performing this andyss
a the sysem architecture levd is difficult unless the project sdects a practical implementation
scenario and takes design decisons. This has been done, for example, by the Americansin

February, 1998 Page 56
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

their ITS Nationa Architecture [USA ITS] where they have compared four architectures by
choosing common scenarios and design decisions.

However, aproject may have aneed at an early stage of the system development, for example
during the system architecture definition, to justify thet the envisaged system islikely to lead to
a successful implementation; meaning, among other things, thet it is cost-effective to implement.
It is then necessary to perform an initid cogt-benefit andyds trying to answer the following
question: What benefitswould | get for what investments?

It is necessary to identify what elements of the architecture would require a high investment,
especidly if the system has to be built from scratch, and what are the potentid benefits of the
implemented system. This implies that some design decisions will have to be taken but does
not necessarily mean that a complete design has to be done, because the analysis can be done
a amore quditative levd.

To hdp performing this task, cost and benefit matrices (see Figure 4.1 and Figure 7.4) can be
built, with cogts and benefits being expressed in terms of both tangible and intangible qudities
[EUROBUS].

Examples of non-recurring tangible costs include:
Purchase of hardware, software
Steff time of planners, system engineers
Traning of saff

Examples of recurring tangible cost include:
Maintenance costs
Communication costs

Examples of non-recurring intangible cost include:

Cogsdueto delays

February, 1998 Page 57
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

Costs Tangible Intangible

Nonrecurring

ub-system A

- Purchase Low Low

- mantenance High Low

Recurring

Ub-system A

ub-system B

Figure7.3 - Cost Matrix
Examples of recurring intangible costs include:
Costs due to a non-standard system requiring specid attention

Lack of accurate information for planning and decison making

Benefits Tangible Intangible

Improve Safety

Increase Economic Productivity

Reduced Energy Use

Enhancement to the Environment

Improved Mobility/Accesshility

Increased Efficiency

Improved Qudlity of Life

Figure 7.4 - Benefit Matrix
Examples of tangible benefits include:
Improved mohility, maintenance
Reduction of costs
Examples of intangible benefits include:

Increase staff and customer confidence

February, 1998
Issue 1.0

Page 58

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Better qudity of service

Once these matrices have been defined, an assessment can be performed based mainly on the
project’ s team experience.

7.11.1 Market Analysis

The question we try to answer is “wha products could | use for implementing the
architecture, and is there an opportunity for me to develop, from my architecture, a product
that | could sdI”.

To bring eements of answer to this question three steps, as a minimum, have to be undertaken:
1. What are the current characterigtics of the market and mainly:
What products are available?
At which cost?
Can | purchase them eadly (good distribution)?
Does the manufacturer offer after-sales services?
etc.
2. Then there is aneed to characterise the market in the future and identify:
What are the opportunities in the market?
What are the threats?
3. Do | need standards to develop my products? Are these standards available?

So far, R&D projects do not normdly perform this type of sudy. However, if an R&D
project intends to launch products on the market or to use products off the shdlf, then thistype
of anayss may be necessaxy.

7.12 Functional Analysis

The CONVERGE-SA project has developed a Functiona Architecture Analysis Tool, which
has been design to give:
System designers

System integrators
System owners

the ability to estimate the potential performance of ITS services while the architecture isbeing
deveoped. In particular:

The impact of a certain choice of architecture, or the certain choice of functions, can be
assessed

February, 1998 Page 59
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The expected performance differences between various possible architectures can be
investigated

Sensitive elements of an architecture can be identified, i.e. when amdl changes in one
section cause large variations in the expected responses.

An overview of thistool can befound in Appendix R.

February, 1998 Page 60
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

8. REFERENCES & BIBLIOGRAPHY

System Architecture is a new subject area and there are only a limited number of books that
address the subject. Unfortunately some of them are not readily available in some countries.
This list will be updated during the programme. The Books marked with a gtar(*) are highly
recommended.

[CORD DO004-PT3]

Per-Olof Ryd (Ed), Recommended Definitions of Transport Telematics Functions and
Sub-functions, DRIVE |l project CORD (V2056), Ddliverable N° D004 - Part 3, 1994. (A
new verson is being prepared)

[CORD DO004-PT6]
Galllet J-F (Ed.), Recommended Methodology for Transport Telematics Architectures,
SATIN Task Force, DRIVE Il project CORD (V2056), 1994.

[CORDEX AC23]
CORDEX, DATEX-Net Specifications for Interoperability - Version 1.1 - Annex 2:
DATEX EDIFACT Messages, DRIVE |1 project CORDEX, 1996.

[Crowe 1996]
M. Crowe, R. Beeby and J. Gammack, Constructing Systems and Information: A Process
View, McGraw Hill, 1996, ISBN 0-07-707962-0.

[DeMarco 1978]
DeMarco T, Structured Analysis and System Specification, Prentice Hall, 1978.

[EMCATT 1995]
EMCATT, Functional System Safety and EMC, DRIVE Il Project EMCATT (V2064,
1995.

[EUROBUS]
EUROBUS, Framework for cost benefit analysis,

[Franco 1997]
Franco G and Jesty P H, Architecture Analysis Tool Getting Started Manual, Framework
IV Transport Telematic Project CONVERGE (TR1101), Ddliverable DSA4.2, 1997.

[Gaillet 1996]
Galllet J F, CEN/TC 278 Framework Part 1: Description of the Different Working
Groups, ERTICO, 1996.

[Gall 1986]
Gdl J, Systemantics: The Underground text of Systems Lore, The General Systemantics
Press, 1986, ISBN 0-9618251-0-3.

February, 1998 Page 61
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

[Giezen 1996b]
Giezen J, Jesty P H and de Bruijn M, System Architecture: The Control of System
Behaviour, Proceedings of the 3 World Congress on I TS, 1996.

[Hatley 1987]*
Hatley D Jand Pirbhai |A, Strategies for Real-Time System Specification, Dorset House,
1987, ISBN 0-932633-11-0.

[Hatton 1997]
Hatton L, Software Failures: Follies and Fallacies, |IEE Review, March 1997.

[Hice 1991]
G. F. Hice, DS: Distributed Systems Integration, CAP Gemini Publishing BV, 1991,
ISBN 90-71996-27-1.

[Hice 1992
G. F. Hice, MISE: Managing Information Systems Evolution, CAP Gemini Publishing BV,
1992, ISBN 90-71996-54-9.

[Hitchins 1992]
D. K. Hitchins, Putting Systems to Work, Wiley, 1992, ISBN 0-471-93426-7.

[Holloway 1988]
Holloway S, Data Administration, Gower Technical Press, 1988.

[Inmon 1992]
W. H. Inmon and J. H. Caplan, Information Systems Architecture: Development in the
90's, QED Information Services, 1992 ISBN 0-89435-410-8.

[1SO 9126]
SO 9126, Information Technology - Software Product Evaluation - Quality
Characteristics and Guidelines for their Use, 1991.

[1SO 10746]
ISO/IEC 10746-1, Reference Model of Open Distributed Processing (Committee Draft),
JTCL/SC21N, 1994.

[1SO 11179-1]
SO 11179-1, Framework for the Specification and Standardisation of Data Elements.

[1SO 11179-2]
SO 11179-2, Classification for Data Elements

[1SO 11179-3]
SO 11179-3, Basic Attributes of Data Elements.

February, 1998 Page 62
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

[1SO 11179-4]
SO 11179-4, Rules and Guiddlines for the Formulation of Data Definitions.

[1SO 11179-5]
SO 11179-5, Naming and Identification Principles for Data Elements

[1SO 11179-6]
SO 11179-6, Registration of Data Elements

[1SO CIM]

SO TC184 SC5 WG1, Reference model for Floor Shop Production Standards part 1: A
Reference Model for Sandardisation and a Methodology for Identification of Standards
Requirements Technica Report, 1989.

[ITSEvd]
ITS America, ITS Architecture Evaluation Plan, June 1995. Seeadso [USA ITS]

[ITSEM 1993
DG XIllIl, Information Technology Security Evaluation Manual (ITSEM), September
1993.

[Jesty 19964
Jesty P H and Giezen J, Its Architecture Jim, But Not as We Know It!, Traffic Technology
Internationd, June/July 1996.

[Jesty 1996b]
Jesty P H and Giezen J, System Architecture: Flexibility, Management and Maintenance,
Proceedings of the 3 World Congresson I TS, 1996.

[Jesty 1997]
Jesty P H, Giezen Jand Fowkes M, System Safety Guidelines, Framework IV Transport

Telematic Project CODE (TR1103), 1997.

[MISRA 1994]

Motor Industry Software Reliability Association, Development Guidelines for Vehicle
Based Software, MIRA, 1994, ISBN 0 9524156 0 7. (Available from D Ward, MIRA,
CV100TU, UK)

[Newton 1993]

Newton Jand Wahl D C, Manual for Data Administration, US Department of Commerce,
Nationa Ingtitute of Standards and Technology Specia Publication 500-208, 1993 (Available
from Superintendent for Documents, US Government Printing Office, Washington, DC
20402, USA)

[Neumann 1995]
Neumann P G, Computer Related Risks, Addison Wedey, 1995, ISBN 0-201-55805- X.

February, 1998 Page 63
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

[PASSPORT D8]
PASSPORT, Towards the Certification of ATT Systems. System Safety Aspects, ,
DRIVE Il Project PASSPORT (V2057/8), Deliverable N° 8, 1995.

[PASSPORT D9]
PASSPORT, Framework for Prospective System Safety Analysis, DRIVE Il Project
PASSPORT (V2057/8), Deliverable N° 9, 1995.

[Petroski 1982]
Petroski H, To Engineer is Human, St Martins Press, 1982, ISBN 0-312-80680-9.

[Priestley 1977
Priestley M, Practical Object Oriented Design, McGraw Hill, ,ISBN 077091760.

[QUARTET D53]
QUARTET, Final Methodology for Architecture Assessment, DRIVE |1 Project
QUARTET (V2018), Deliverable N° 53, 1995.

[Rechtin 1991]*
E. Rechtin, Systems Architecting: Creating and Building Complex Systems Prentice Hall,
1991, ISBN 0-13-880345-5.

[Rumbaugh 1991]
Rumbaugh J, BlahaM, Premerlani W, Eddy F and Lorensen W, Object-Oriented Modelling
and Design, Prentice Hall, 1991, ISBN 0-13-630054-5

[SATIN]
The SATIN documents are ligted at the end

[Sommerville 1992]*
|. Sommerville, Software Engineering (4th Ed.), Addison-Wesley, 1992,
ISBN 0-201-56529-3.

[Thomé 1993]*
B. Thomé, Systems Engineering: Principles and Practice of Computer-based Systems
Engineering, Wiley, 1993, ISBN 0-471-93552-2.

[USAITY
ITS America, The National Architecturefor ITS, see“www.rockwel.com/itsarch/” or
“www..itsa.org/public/archdocs/nationd.html”.

[Wiener 1993]
Wiener L, Digital Woes: Why We Should Not Depend on Software, Addison Welsey,
1993.

February, 1998 Page 64
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

[Zimmerman 1980]
Zimmerman H, OS Reference Model - the SO Model of Architecture for Open Systems
Interconnection, |EEE Transactions on Communications COM -28(4) pp. 425-432.

SATIN Documents

The following documents were produced by the SATIN Task Force and are available from
the Commission. The relationship between each other is shown in Appendix S.

[SATIN AC13-PT1]
Bonora S, ATT System Architecture Developments: the Automatic Debiting System
(ADS) Area, SATIN Task Force, DRIVE Il Project CORD (V2056), 1994.

[SATIN AC13-PT2]

Both M, ATT System Architecture Developments:. the Freight and Fleet Management
and Hazardous Goods Monitoring (FFM and HGM) Areas, SATIN Task Force, DRIVE
Il Project CORD (V2056), 1994.

[SATIN AC13-PT3]

Casmir C and Helcmanocki N, ATT System Architecture Developments: the Traffic and
Travel Information (TTI) Area, SATIN Task Force, DRIVE Il Project CORD (V2056),
1994.

[SATIN AC13-PT4]
Roach H, ATT System Architecture Devel opments:. the Public Transport Area, SATIN
Task Force, DRIVE Il Project CORD (V2056), 1994.

[SATIN AC13-PT5]
Giezen Jand Blonk J, ATT System Architecture Developments: the Inter-Urban Traffic
Management (IUTM) Area, SATIN Task Force, DRIVE Il Project CORD (V2056), 1994.

[SATIN AC13-PT6]
Wrathdl C, ATT System Architecture Developments:. the Urban Traffic Management
(UTM) Area, SATIN Task Force, DRIVE Il Project CORD (V2056), 1994.

[SATIN AC13-PT7]
SATIN, Proposals for Urban, Inter-Urban and In Vehicle Architectures, SATIN Task
Force, DRIVE Il Project CORD (V2056), 1995.

[SATIN AC13-PT8]
SATIN, Interfaces Between the IRTE Areas, SATIN Task Force, DRIVE Il Project
CORD (V2056), 1995.

[SATIN AC13-PT9]
Galllet JF, Highlights of Transport Telematics Architecture Concepts and Results,
SATIN Task Force, DRIVE Il Project CORD (V2056), 1995.

February, 1998 Page 65
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

[SATIN-AC20]
Giezen J, Blonk Jand Jesty P H, Reference Models and their use in Architecture
Development, SATIN Task Force, DRIVE Il Project CORD (V2056), 1995.

[SATIN DOO7-PT1]
Wrathdl C, High Level User Requirements and Quality Factors for a European IRTE,
SATIN Task Force, DRIVE Il Project CORD (V2056), 1995.

[SATIN-AC18]
Blonk J, Blachére Jand Gaillet JF, Review of the DATEX Dictionary, a SATIN
contribution to DATEX, SATIN Task Force of CORD (V2056), November 1995.

February, 1998 Page 66
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX A PROPOSED SYSTEM ARCHITECTURE
DELIVERABLE CONTENTS LIST

1 System Concept

1.1 Vision Statement

A brief satement of WHAT the system should achieve, clearly defining the system boundaries
(refer to Section 6.2.1).

1.2 Identification of Users

All persons affected by, or who will have an effect on the find system (refer to Section 6.2.2).

1.3 Mission Statement

A brief statement of HOW it is proposed to produce the system (refer to Section 6.2.3).
2 System Characteristics

A description of al propertiesthat the find system should exhibit. This should be generated by
al those who will have an affect on, or will be affected by, the system (refer to Section 6.3).

3 System Requirements

3.1 Context Requirements

An expresson of assumptions about the syslem environment together with policy satements
and drategic and tactical considerations for the development and/or deployment of the system
(refer to Section 6.3 and Appendix E).

3.2 Functional Requirements

Requirements defining the type of sarvice expected from the system, fully covering dl
functiona dementsin the system (refer to Section 6.3 and Appendix F).

3.3 Non-Functional Requirements

Requirements referring to intrindgc qudity requirements of the proposed architecture (refer to
Section 6.3 and Appendix G)

3.4 Context Diagram

The first engineering drawing of the system showing the information exchange with terminators
representing data sources and sinks. This will alow completeness and consistency checks to
be performed (refer to Section 6.5).

February, 1998 Page A-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

4 Level 3 and 2 System Properties - Reference Models

Modds concerned with the control domain alowing zones of jurisdiction to be ddinested.
Levd 2 refers to angle Authority control whilst Leve 3 refers to multiple Authority control in
which a consensus must be obtained (refer to Section 6.6).

5 Level 1 Architectures

5.1 System Structure - Functional

Functional Architecture

Describes the various sub-functions of the system and the data flow between them (refer to
Section 6.7.2).

Control Architecture

Describes the flow of control Sgnals between sub-systems (refer to Section 6.7.2).
Information Architecture

Comprises data models for the sets of data that have been identified (refer to Section 6.7.2).
Enterprise Architecture

For a system having many types and layers of management this ensures compatibility with the
dlocation of regponshbility shown in the leve 2 and 3 reference models (refer to Section
6.7.1).

Physical Architecture

Describes the dlocation of physica units, and the communication paths between them,
required to perform the functions of the Functional Architecture (refer to Section 6.7.4).

Communication Architecture

Describes the channd characteridtics identified within the Physical Architecture (refer to
Section 6.7.4).

5.2 System Structure - Behavioural

Describes those features which are concerned with the "manner” in which the system operates
and which together create the "workable" attribute of the System Architecture (refer to Section
6.8).

February, 1998 Page A-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX B PROPOSED SYSTEM ARCHITECTURE
ASSESSMENT DELIVERABLE CONTENTS
LIST

1 User Needs
A re-gtatement of the User Needs which have been identified for this system.

2 Review of System Concept

A summary of the results of the review of the System Concegpt:
Vison Statement (see Section 7.4.1).
Identification of the Users (see Section 7.4.2).
Mission Statement (see Section 7.4.3).
System Boundary (see Section 7.4.4).
3 System Characteristics

A summary of the results of the review of the System Characteristics (see Section 7.5).
4 System Requirements

A summary of the results of the review of the System Requirements (see Section 7.6):
Context Requirements
Functiona Requirements
NonFunctiond Requirements

4.1 Preliminary Safety Analysis

A summary of the Prdliminary Safety Andyss (see Appendix H); details may be placed in an
Appendix.
5 Reference Models

A summary of the anadlysis (see Section 7.7.1) and review (see Section 7.7.2) of the Level 3
and Level 2 Reference Moddls.

6 Level 1 Architectures

A summary of thereview of the Level 1 Architectures:
Functiona Architecture (see Section 7.8.1).
Control Architecture (see Section 7.8.2).
Information Architecture (see Section 7.8.3).

February, 1998 Page B-1
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

Enterprise Architecture (see Section 7.8.4)
Physical Architecture (see Section 7.8.5)
Communication Architecture (see Section 7.8.6)

A summary of the andyses of the Levd 1 Architectures.
Traceability Matrix (see Section 7.8.1)
Checks for Consistency (see Section 7.9)
Functional Analys's (see Section7.12)

7 Benefit Analysis

A summary of the Benefit Andysis (see Section 7.10)
8 Cost - Benefit Analysis

A summary of the Cost-Benefit Analyss (see Section 7.11)

February, 1998
Issue 1.0

Page B-2

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX C LEVELS OF ARCHITECTURE

The following sections state the differences between the four levels of architecture.

Appendix C.1 Level 0: (Sub-)System Design

Appendix C.1.1 Characteristics and Assumptions

Single expertise domain for each component

Standard development procedures

Fixed godl

Full st of specifications

Applicable standards

Full qudity control and product certification
Appendix C.1.2 Objectives

Marketable product

Functiondlity (god oriented)

Testability

Performance and reliability

Component flexibility (to meet different gods)

Component maintainability

Application of standards

Appendix C.1.3 Methods, Technigues and Presentation

Domain-specific education and training
Standard, domain specific methods, techniques and presentations

Use of widdy available, sandard, domain specific tools, some of which are sophisticated
and require expertise

Appendix C.2 Level 1: System Development

Appendix C.2.1 Characteristics and Assumptions

Related domain expertise
Semi-standard development procedures
Single non-conflicting god

February, 1998 Page C-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Possible growth of data, traffic, users etc.
Negligible evolution or expandon in any volaile dimension
Full set of system requirements
Digtribution and/or replication of functiondity
Process certification

Appendix C.2.2 Objectives
Functiondity: god oriented and supporting
Integration of components
Structuring
Hexibility
Maintainability
Configurability
Reliability and availability
Performance, efficiency and effectiveness
System testability
Integration of data and messages
Configuration management
Problem management
Consolidation of desired emergent properties
Predictability of system behaviour
System safety, security and EMC
Definition of system dictionary

Appendix C.2.3 Methods, Techniques and Presentation

Education, experience and training in system engineering
Methods, techniques and presentations as used in the system engineering domain

Use of some dedicated system engineering tools requiring moderate expertise, which
produce results which can be understood by al participants

February, 1998 Page C-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix C.3 Level 2: Single Authority Control Regime
Development

Appendix C.3.1 Characteristics and Assumptions

Non-related expertise domains, multi-disciplinary
Non-standard, partly described, dedicated procures
Multiple and conflicting gods (intra-control regime)
Single authority
Tentative set of functiond requirements
System evolution (hardware, functiondity, knowledge)
System expansion (functiond, geographicd, user types)
Standards virtually absent, some to be defined
Validation procedures

Appendix C.3.2 Objectives
Functiondity: god oriented, then supporting
Integration of systems
Intra-god conflict resolution
Responsibility
Complexity management
Development of Reference Moddl(s) for structuring and smplicity
Intra- cong stency
Hexibility (at Levels 1 and 0)
Stability (especidly for control systems)
Contrallahility (for control systems)
Maintainability; Operability; Managesbility
Degradability; Locd autonomy; Recoverability
Upgradability
Effectiveness
Predictable behaviour

Integration of data definitions in system dictionary

February, 1998 Page C-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix C.3.3 Methods, Technigues and Presentation

Education, training and experience in system architecture

Methods, techniques and presentations in system engineering and system architecting
(especidly layered models)

Some dedicated tools for modd description, coherence and consstency andys's, which
produce results which can be understood by al participants

Appendix C.4 Level 3: Multi-Authority Control Regime
Development

Appendix C.4.1 Characteristics and Assumptions

Non-related expertise domains, multi-disciplinary

Non-standard, scarcely (or not at al) described, dedicated procedures

Multiple authorities, shared responsibility

Superficid knowledge of ultimate functiondity

Conflicting gods (inter-control regimes, especidly commercid isues)
Appendix C.4.2 Objectives

Functiondity: improvement of efficacy of individud gods, emphasis on behaviour

Development of Reference Modd for conflict resolution, inter-operability and inter-control
regime congstency

Integration of data definitions or interpretation/transformation rules
Upgradability

Flexibility (at Levels 2, 1 and 0)

Maintainability (after the integration of the control regimes)
Allocation of responsihilities, liabilities and rights

Financid and commercid arrangements

Appendix C.4.3 Methods, Technigues and Presentation

Education, training and experience in systlem architecture and human factors
Primarily textua and dementary figures and diagrams

Elementary tools

February, 1998 Page C4
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix C.5 Supra-system Level (Context)

Appendix C.5.1 Characteristics and Assumptions

Non-related expertise domains. multi-disciplinary
Externd influence outside control of current stakeholders

Appendix C.5.2 Objectives
Identification and incorporation of laws, loca regulations and other binding rules
Identification of financid and taxation rules, and ways to ded with those issues
Identification of standards gpplicable to the system and the way to apply them
Identification of the information required by externd authorities and how to ded with them

Identification of future inter-operability with emerging systems, and the determination to
ded with it

Appendix C.5.3 Methods, Technigues and Presentation

Education, training and experience in system architecture and legd issues (pertaining to the
subject)

Primarily language oriented

No tools available

February, 1998 Page C-5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX D SYSTEM CHARACTERISTICS

The system characteristics are derived from the User Needs and the System Concept. The
following is a checklist of those issues that should be considered when cresting or assessing
the system characterigtics.

System overview - a brief satement of what the sysem will look like, and how it will
operate.

Functiond - the principa functions of the system.

HMI - the way that the Users will use the system.

Inditutiond - e.g. the authorities associated with the system.

Organisationd - e.g. the relationship between the operators of the system

Socid - eg. the acceptability of the system to the final users.

Legd - any lawsthat apply or that are needed.

Dataand Information - the main items needed by, and produced by, the system.
Communications - the main communications needed by the system.

Safety - obvious safety hazards.

Security - obvious security issues.

Electrical and dectronics, including power supplies - any specid requirements.
Electromagnetic compatibility - any specia requirements.

Mechanica, including packaging and Sze - any specid requirements.

Degraded modes of operation - eg. after afalure, or during maintenance.
Maintenance - eg. any specia redtrictions.

Future expansion, both functiona and geographical - both planned and possible.
Financid (system deployment) - costs and benefits expected; who will pay for it.
Financid (payment for services) - eg. how the user will pay for the service,
Risk - eg. technica {can it be done?} ; financid {how much will it cos?}

It should be noted that a this stage in the assessment the most importart attribute is
completeness (eg. that al the identified Users have been conddered). The System
Characteristics may not be consstent and will amost certainly be written at differing levels of
detall; this does not maiter.

February, 1998 Page D-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX E CONTEXT REQUIREMENTS

The context requirements specify the reaction to the congtraints imposed by the environment in
which the system is to operate. The following is a checklist of those issues that should be
consdered when creating or assessing the context requirements.

System openness - the architecture should permit the provision of equipment and services
from various suppliers within an open, modular and incremental plan.

Temporal - the architecture should support an evolutionary development strategy that enables
the continuous upgrading of the system.

Geographical - the architecture should support an evolutionary implementation Strategy thet
foresees an orderly geographic growth of the system.

Ingtitutional - the condraints determined by the dlocation of responghilities, liailities etc. to
parties.
Financial - the development costs need to be balanced against maintenance and operation

costs. Overdl cogts need to be balanced against the expected benefits of the system that can
also be expressed in monetary terms.

Social - the acceptability of the proposed system by both users and non-users.
Technical - the availability and suitability of technologies.

Risk - the reduction of the risk of delay or non-completion of critica pathsin the development
plan.

Infrastructure - the architecture should permit the provison of services on the exigting road
network, and should be compatible with existing road infrastructures.

Appendix E.1 Examples of context reqguirements

The architecture shal permit the provison of equipment and services from various suppliers
within an open, modular and incrementa development plan.

The architecture shall support an evolutionary development Strategy that enables the
continuous upgrading of the system.

The architecture shdl support an evolutionary implementation Strategy that foresees an
orderly geographic growth of the system.

The architecture shdl support the provison of servicesin various topographica domains.

February, 1998 Page E-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX F EUNCTIONAL REQUIREMENTS

The functiond requirements define the type of service that will be expected from the system
and the functions that will provide this service. The functiond requirements will be written at
various levels of detall. Initidly many of them will be & ahigh levd and then, as the life-cycle
proceeds, they will be expanded into lower levels of detall; this should, of course, be done
under verson control. Functiond requirements should adways be written in a manner such that
they are:

understandable, concise and sdlf-explanatory.
consistent between each other.
testable - written formally uang ‘shdl’.
tracesble during the life-cycle.
Functiona Requirements can be divided into two main categories

a) Primary Requirements (or main service provison) - The services identified by the
User Needs and/or the System Characteristics will be implemented by one or more
functions. At the high level of definition road ITS developments are advised to use the
CORD Function List [CORD D004-PT3] for this purpose.

b) Derived Requirements - these are requirements that are needed because of the
particular design decison, and can therefore appear & any point in the life-cycle. A
particularly important set of derived requirements are the Safety Requirements that have
been identified by the Safety Analys's (see Appendix H)

Appendix F.1 Examples of functional requirements

The architecture shal support the recording of the behaviour of the traffic and transport
System.

The architecture shal support methods for predicting near-future localised traffic
conditions.

The architecture shal support the monitoring of network traffic conditions.

The architecture shdl support the accurate and efficient identification of network incidents,
including accidents, lane closures, demand pesks and infrastructure failures.

February, 1998 Page F-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX G NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements specify the performance and/or qudity attributes. Since many
high-level non-functiond requirements will ultimately be implemented by low-leve functiona
requirements, & this in the life-cycle it is far less important as to whether a requirement has
been categorised as functional or non-functional than that it has been recognised to exis.
The following is a checklist of those issues that should be consdered when cregting or
assessing the non-functional requirements (see dso [1SO 9126] and [SATIN D007-PT1]).

Continuity - an ITS system is likely to be safety-related. It should therefore operate
continuoudly or a least ensure that unsafe operation does not result from degradation.
Nonsafety-related systems may need this attribute for commercia reasons,

Evaluability - the ability of the architecture to facilitate the evauation of the effects of the
working system upon its environment, and upon its own operation.

Expandability - the ahility of the architecture to support new functions or dataitems.
Extendibility - the ability of the architecture to support the addition of new locations.

Flexibility - the ability of the architecture to support modifications to its components in
order to sisfy changing user requirements. In particular with respect to (see dso
[QUARTET D53]):

- functiond modules

- ddaaitems

- message composition

- changesin the network

- changesin the infrastructure

Human Factors: the ability of the architecture to produce systems that are easy to use.
Projects are referred to the project CODE (TR1103) for support on Traffic Safety and
Human Machine Interfaces (HMI) for assistance.

I nter oper ability - the ability of the architecture to interface harmonioudy with other ITE
systems outside of the system boundary (see dso [QUARTET D53)).

Maintainability - the ability of the architecture to support timely changes to the software
or hardware at any location.

Proprioception - the ability of the system to monitor its own performance [CORD D0O04-
PT6].

Robustness - the ahility to withstand environmenta stress or infrastructure failures.

February, 1998 Page G-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Safety - to diminae the posshility that the sysem might have a negative effect upon its
environment (see Appendix H and [Jesty 1997])

Safety Integrity - the measures specified to ensure that dl safety functions are performed
in order to meet the Safety Integrity Level. They are divided into the measures to avoid,
and to control, the effects of systematic and random faults.

Security - the measures specified to protect he sysem from mdicious attack and to
maintain the security, integrity and privacy of the data during use, storage and transmission.

Survivability - the ability of the architecture to continue the performance of critica
functions when a part of the system isinoperable.

Testability - the ability of the architecture to support verification tests during the
development of the system.

Time and Space Criteria - with particular reference to:
- datetransfer quantities

- computationd complexity of functions

- storage space

- accesstimes

- trangmisson times

Appendix G.1 Examples of non-functional requirements

The architecture shdl ensure the continued provison of benefits under environmenta stress
or infragtructure failures.

The architecture shdl ensure systlem safety during degraded mode operation.
The architecture shdl ensure system availability during degraded mode operation.

The architecture shal adlow small changes of enhancement, extenson or adaptation without
necessitating large redevel opment.

The specification, design and documentation of the system shal permit the effective
goplication of normd rigorous validation and verification procedures when changes have
been made.

The architecture description shall include a carefully studied risk andysis as a reference for
maneging the development phase.

February, 1998 Page G-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX H PRELIMINARY SAFETY ANALYSIS

The following is a summary of Prdiminary Safety Andyss (PSA) from the Framework for
Progpective System Safety Andysis (PSSA) produced by the EC DRIVE Il Project
PASSPORT (V2057) [PASSPORT D9]. A PSA should be carried out before the detailed
design is underway and is based on the information that is avalable a the time. Since most
new systems are extensons of, or make use of, existing systems, the information available at
even this concept stage can be quite considerable. The objectives of a PSA are:

preliminary hazard identification.

preliminary identification of the safety objectives.
preliminary identification of the safety requirements.
preliminary assgnment of Integrity Leves.

A hazard is an undesirable effect by the system on its environment. It is therefore necessary to
produce a model that shows the system in relaion to its environment. One such model is the
PASSPORT Diagram which is an extenson of Y ourdon data-flow dagrams. A PASSPORT
Diagram (see Figure H.1) contains the nucleus of the system & its centre with dl the possble
interactions with its terminators surrounding it. The sysem boundary isimmediately outside the
terminators. The type of data passing between the nucleus of the Target of Evaluation is also
shown, as are any known databases. The modd is specifically designed for systems which
contain computers and which interact with other syssems. The diagram can be checked for
completeness by ensuring that it will perform the functions specified in the sysem
requirements, and aso that dl the influences on the system (“ Static Datd’) are present (e.g.
development process, standards, given data etc.). The diagram can adso be checked for
congstency by ensuring that “what comes in must go out” and “what comes out must have
gonein”.

A PSA should be peformed by a team of persons with a variety of relevant expertise,
including human factors, and once the team is agreed that the PASSPORT Diagram does
indeed provide a true representation of the system the hazard analyss can begin. Initidly a
“what if..?" andyss should be performed on each ‘box’ in the diagram; this will enable the
primary hazards to be identified, from which the safety objectives can be formulated. Each
hazard can then be studied further by using a “what causes..?’ tree anayss based on the
information currently available; this will engble the prdiminary safety requirements to be
identified. A study of the controllability of each hazard [PASSPORT D9] will engble a
prliminay Sefety Integrity Level to be assgned for the desgn and development of the
corresponding sub-system.

February, 1998 Page H-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Sour ce

Stanc Data
Data 4)

Nucleus of the
Data = Target of Command —) Actuators
Evaluation
|/faceto
Command Command ——) another
system
Internal
Database

FigureH.1 - PASSPORT Diagram
Appendix H.1 System Boundary

The PASSPORT Diagram in Fgure H.1 identifies the system boundary, with the terminators
on the Left and Right locating the points where the system interacts with its environment (i.e. at
the boundary of, but within, the system). It is important that the system boundary is identified
correctly and exactly snce it defineswhat is, and is not, under the influence of the system life-
cycle. Not only does this location have commercia consegquences, but the precise statements
of the safety hazards, and hence the safety requirements, may vary if the system boundary is
moved.

February, 1998 Page H-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX | SYSTEM ARCHITECTURE: THE
DEVELOPMENT OF THE REFERENCE
MODEL

This paper was prepared by Jan Giezen for the 4™ World Congress on Intelligent
Transport Systems.

Appendix 1.1 Introduction

CONVERGE is one of the horizonta projects in the Advanced Transport Telematics (ATT)
programme. One of the tasks of CONVERGE is to contribute to the development of the
system architecture (SA) for the European ATT systems by means of methodology definition,
advice to the projects and activities to amalgameate the architectures of the projects.

One of the theoretica contributions of the CONVERGE-SA to the methodology is a four-
level modd to describe some of the various issues an architecture has to address, see the
Architecture Guidelines, as produced by this project. For an overview, see [Jesty 1996b).

The highest leve (level 3 architecture) describes the multi-authority domain. In alarge system,
epecidly in the ATT environment, the overal system is not under one authority, but many.
Each of these authorities has to agree on certain issues of the system, like the production and
availability of data, apportionment of revenues, responsbilities and rights etc. This has to be
established in amode and serves as abasis for the system.

The next level (level 2 architecture) represents one single authority, a control regime. This
control regime is, within the boundary set by the level 3 architecture, free to develop further
Sructures. However, it must be clear that Smilar structures for each of the control regimes are
advisable. To this end CONVERGE proposed the level 2 reference model, which the projects
are advised to apply, especialy to structure the functiondity of the syssem and to improve the
anticipated behaviour of the system [SATIN AC20].

Unfortunatdly, it turned out that a considerable number of projects had problems to gpply the
gructure implied by the reference modd. Further investigation showed that there were various
reasons for this inadequate theory, insufficient guiddines for development and difficult
incorporation in the traditiona development life-cycle.

The theory in the guidelines left something to be desired. Partly this wes intentionally, to keep
the guiddlines concise. But this Stuation was aso caused by the then yet incomplete notion of
what was needed by the projects, which insght emerged later. This theory should address the
rationde and advantages of the proposed structure, compared to the more traditiona
functiona decompaosition methods, for instance following data flow diagrams.

February, 1998 Page I-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The development guiddines should explain how such a reference modd can be devel oped,
following the control paradigm, and how this functiona result can be enhanced to cater for a
variety of organisationd and behaviourd issues.

Also the incorporation of this activity in the more traditiond development life-cycle seemed to
be difficult. Current theory books on system development do not normaly mention a phase for
architecture development and those that do, do not mention this specific reference modd,
because it isa CONVERGE-SA concept.

This paper is a collation of exigting and newly developed theory and practica experience to
addressthis deficiency.

Appendix 1.2 Level 2 Reference Model: Disadvantages of
Decomposition Techniques

Normally, software systems are designed following a decompaosition technique, of which data
flow diagrams (DFDs) is one of the best-known examples. (For the case of the subject: object
oriented design (OOD) is not fundamentdly different in this context, dthough OOD in itsdf

embodies awedth of new technology.)

There are, however, quite anumber of disadvantages of straight functiona compostion. These
are the prime focus on functiondity, the likdihood of the creetion of a fait accompli for many
design detalls, the combinatoria exploson' and the potentia of ungtructured results (dthough
this contingency islesslikey with OOD).

The prime focus on functiondity means that many organisationd or behaviourd issues are not
congdered. Both DFD and OOD lack adequate accommodation for these issues, these
methods are based on functiondity, and attention to other things is just lip-service in many
cases or is just left to the desgner to handle. Yet organisationd issues have to be addressed
and behaviourd issues are a prime concern: even if the system is functiondly correct, the
system can be rejected because of abject behaviour. Thisis not just atheoretica contingency;
in many cases of system rgection the reason was not the amount of deficiencies in the
functiondlity; these were undoubtedly present but were expected to be correctable. The
reason for rgection however was unworkable behaviour, with no prospect of fundamentd
improvemen.

Progression following the functiond decomposition paradigm, without proper attention to other
issues may eedly lead to a fait accompli in various respects. the purdly functiona gpproach
may obstruct better solutions. For example, whils a DFD garts with a context diagram
without further restrictions, it can be questioned whether at that point a condraint-free sart is
redly the best, or even aredidtic, postion.

February, 1998 Page I-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Standard functiond decompodition is aso haunted by the phenomenon of combinatoria
exploson, a fundamentd characteridtic, not to say measure, of complexity. Regularly, a
function is connected with a range of other functions. Needless to say that this adds to the
complexity of the result and tha this outcome is not a al dedrable Moreover: it is
unnecessaxry, as the following will show. Smple computation will demondrate that the
interactions increase rapidly, more or less exponentidly; in the layered modd this increase is
just linear and obvioudy more easy to handle.

To people familiar with decomposgtion techniques it is well-known that the outcome of the
process can be quite unstructured. This seems to be a paradoxicd dtuation: whilst the
production of DFDs follows a sructured method, meaning: with certain rules for diagram
production and internd consstency, this does by no means imply that the result, after some
layers of decompostion, is redly showing any structure a dl, apart from the decomposition
itsdf. Partly this can be attributed to te non-existence of refined rules on how to goply
decompogtion; any divison is dl right, as far as the method goes, resulting in largely varying
results between different designers. Apparently, if the output of the process needs to present a
higher-level structure, this structure has to be input to the decomposition process.

The levd 2 reference modd is meant to address this issue: to feed the decomposition process
with a gart stuation, which aready encompasses some solutions to the various issues that
have to be addressed. Put in another way: the level 2 reference mode compels the designer to
congder some issues prior to darting the redisation of the functional Sde of the sysem. It
seems somewhat strange that a some point in the development process the redlisation of
functiondity is of alower priority than organisationa or behaviourd issues, but because of the
exisence of overriding externd congraints, this is often the case. The correct sequence of
design decisons, of which decompostion is just one, will lead to the optimd result. The
question is: what determines the correct sequence? At least a part of the answer isto be found
in the four-level modd, and in the leve 2 reference modd in particular.

Appendix 1.3 The Level 2 Reference Model: Rationale

The leve 2 reference mode represents the structure of a certain control regime; many control
regimes in one system are possble, which have to be addressed at the level 3 modd. The
current question is. what can the reference 2 mode mean during the design of a sysem in
generd, and a control regime in particular? However, before answering that question first the
following question has to be posed: what are the rules that determine the foundation of system
development and that apply to this reference model? The main subjects here are: (1) smplicity
of dructure, (2) description rather than prescription, (3) incorporation of a number of
organisationd and behaviourd issues and (4) accommodation of system evolution.

February, 1998 Page I-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

In the past many systems have presented its users with functiond or behavioura deficiencies,
its owners with maintenance or operationd problems, and both parties sometimes with
sraightforward fallures, sometimes even accompanied by human injuries, dthough the exact
amount is the subject of much debate. These phenomena are investigated by a variety of
authors and from many different perspectives, but one concluson stands out: complexity is an
evil, dmog ubiquitous to dl the investigated systems. The lesson is: the basic Structure of the
system has to be smple. This is reflected in the KISS principle Keep It Smple Stupid.
Complexity renders the resulting system incomprehensible, difficult, error-prone and costly to
adapt, and unpredictable to its users. And if things do go wrong, the staff usudly encounters
great difficultiesto locdise the error.

The reference model, especidly its dructure is advisory, is descriptive, rather than that it
prescribes how things are to be done. It should be consdered serioudy when sarting
functiond decompostion, and should only be changed with articulated and good reasons, but
it is not the fina word. Functiondity has dso something to say on these matters, but only after
due considerations.

The reference modd is meant to incorporate a number of organisationd and behaviourd

issues. These come from the levd 3 modd or draght from the lig of non-functiond
requirements, in particular those that gpply to one or more of the individuad authorities. To this
end firgt a structure for the prevailing system functiondity has to be defined, gpplying KISS,
and subsequently this structure can be enhanced to incorporate especialy behaviourd issues.
The prevalling idea here is that, after refinement, this modd has to lead to predictable system
behaviour in as many Stuations as can possbly be achieved.

System evolution is the phenomenon that a system sarts with a relaively smple, locdised or
limited implementation and that the system, over the years, is enriched in functiondity, growsin
a geographical sense and so forth. This phenomenon is occurring more and more, due to the
investments necessary and other shortages. For comparison: think of the motorway network
itsdlf. Pure functiona decomposition has difficulties to cater for this phenomenon: it is just no
pat of the scenario. However, the reference modd is able to capture the future, evolved
system and by supporting this, it creates a stable basis throughout the system'’ s life-cycle.

The raionde behind the reference modd is expressed in [SATIN AC20] and can be
summarised in the following: (8) amilarity and smplicity of the basic sructure, (b) input to the
functiona design process and () the foothold for predictable system behaviour.

The reason for amplicity has dready been illuminated, but an accompanying advantage has to
be mentioned. Smilar sysems should preferably adopt smilarity in fundamenta structure,
which, conceivably and without further proof, will contribute to standardisation, inter-
operability, easy exchange of experience etc. Hence the reference modd will admonish the

February, 1998 Page I-4
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

desgners to produce smilar results after the functiond design, which would be unlikdly if the
design process would not start from comparable positions and would not gpply the same

Following the former arguments. whilst the reference modd incorporates behaviourd issues,
that remain obscure if a purely functiond paradigm is followed and hence tend to be neglected
or a least to be addressed poorly, thisinput is vauable to safe-guard many behaviourd issues.
Many designers are not trained to address those issues, and those that do understand how to
do it, have not necessarily the budget and time to do it properly, if eventud incorporation is not
obstructed by absence of, or non-compliat measures, esewhere in the system. This shows
the nature of many issues related to system behaviour: by definition they often belong at the
sysem levd, rather than a any lower level of decompostion: this influences priorities and
sequence of implementation decisons.

Predictable system behaviour is an issue in many systems especidly to the users, but it is a
prime concern in control systems. The system operators should be able to rely on the system,
to be confident that a control action or command should lead to the expected outcome - and
nothing more than that: the absence of sde-effects, which would render the syssem more
difficult to control. This can only be achieved if this is incorporated in the design sequence and
the consequences are thoroughly conddered, a a moment where this is ill possble and
feasble: the level 2 reference model, and not after some layers of functionad decomposition. By
then the behaviourd consequences are often intractable. The reference mode makes the
design process amenable for anadlyss of its future behaviour.

Hence the levd 2 reference modd incorporates a number of issues that usualy reman
unaddressed or, if addressed in alater Stage, are by no means transparent.

Appendix 1.4 The Functional Representation: The Control
Paradigm

In functiond decomposition the functions are defined in a rather hgphazard way, and many
data flows are defined, leading to akind of network'. The term haphazard' refers to differences
between developers in particular; whilst each developer may use his own rules, and in a
reproducible way, other designers might do it differently. And dso the reproducibility of the
work produced by a single designer leaves something to be desired; this is demondrated by
the difficulties many desgners have when reviewing their own work after a certain length of
time. Concerning the result: when looking a such a network, especidly after some layers of
decomposition, the smilarity with spaghetti becomes gpparent. The negative connotation of
this dish in the information processng world is wide-spread and not without reason. These
designs are difficult to undergand and even more difficult to maintain. And during maintenance
this structure will become entangled more and more, resulting in early obsolescence of the
sysem. Neumann formulated a kind of lawv' on this issue, which dates that amplicity of

February, 1998 Page I-5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

dructure is retained over the years of maintenance, but that an dready complex structure tends
to increase in complexity [Neumann 1995].

However, the same functionality can be redised in a layered structure and the proof of thisis
reatively sraightforward, as shown by Hitchins [Hitchins 1992], a ‘ spaghetti’ network can be
presented equdly well in alayered equivdent. There are two main differences.

First: data flows that go from one function to another that are straight one-to-one in the
Spaghetti case often need to traverse another function in the layered case. Actudly, this reflects
the background of the spaghetti’ problem.

Second: because the functiond structure has now become one-dimensiond, a completely new
characterigtic can be incorporated in the system, which was amost absent, or at least obscure
and unarticulated in the spaghetti case. There are some paradigms that can be gpplied to
sequence the functiondity, but the most obvious one in a control system is the control
paradigm. An interesting point is that this paradigm explicates a hidden, but nonetheless vitd
and dable aspect of the system. Briefly summarised, the control paradigm expresses the
falowing:

each higher layer controls the lower layer(s);
alower layer is necessary for the higher onesto function;

a lower layer is, if so dedired, able to function on its own (loca autonomy), can sometimes
partly be unavailable (degradability) and can be in a different location (system distribution).

The firgt rule is obvious. The second rule needs some more precison. The higher layers need
the lower layers, but in some cases one of the lower layers can be empty in case of asmplified
verson of a nore generic system, but this does not affect the principle. This may for ingtance
happen at system inception, anticipating system evolution.

The big advantage is found in the third clause. It embodies locd autonomy, degradability and
system digtribution: two behaviourd and one organisationd issue respectively. Loca autonomy
means that the lower levd part is abdle to continue operation if the higher leve is absent.
Degradability means that some part of the lower structure can be lost, without loosing the
prime functiondity of the system, which is gill governed from the top. Locd autonomy and
degradability are difficult to redlise in any other way, than by the layered structure, because of
the many entangled data flows that blur the gStuation. System digtribution is addressed
fundamentdly: now the system is digributiondly pligble: it is organised in such away thet later
on, for ingance during inddlation, the phydcd didribution can be chosen by putting
functiondity on vaious locations If this is done according to traditiona functiond
decompostion, the decomposition must be modelled later on to accommodate distribution,
and then only one verson is the outcome: a non-pliable, determinigtic implementation.

February, 1998 Page I-6
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix 1.5 The Level 2 Reference Model: Step 1:
Functionality

The firgt gep in the derivation of the reference mode isto Structure the functiondity according
to the control paradigm. Thisis rdatively straightforward: list dl the basic services, or functions
of the intended system, and group those according to the control paradigm. Each group hasto
fulfil a certan sub-god of the system, which maybe one of the many conflicting (sub)goas to
be redised. The combined sub-gods should reflect the overdl misson of the sysem. This
requires some thinking, but is not necessarily difficult; consequences of changes can easly be
seen, the bett solution is quite often intuitively obvious, dthough later on many minor
improvements will be added to the existing structure.

This god-oriented derivation of the system functionality and trangpogtion into a structure, dso
sarves to arive a a dable architecture of the syssem. The god of the system is assumed to
remain stable. Indeed, in some cases the gods do fluctuate and sometimes they even change.
However, this cannot be an objection againgt the proposed approach; two arguments will

make this dear. Fird of dl: if the god of the system is changing in aredly noticegble way, it is
questionable whether system production is feasble a dl; for obvious reasons, sability of the
system objectives is the prime assumptions underlying system redlisation. Secondly, if the gods
of the system change, and hence basicaly the system as such, then any method enters the
danger areg, not just the architectura gpproach using the reference modd. Admittedly, most
system show some cregp in system gods during thar life cycde, primarily caused by
progressing indght': ideas do not stop developing a the moment the system is initiated or even
later on when it is installed, but experience will provoke new insght and new ideas on how to
conduct matters. However, this phenomenon has no rdationship with system development
methods.

The resulting structure will show five to ten layers typicdly. This result can be preserted in a
vay ample format: a table summarisng layer sub-god, services, functions and main data
stores, will normdly suffice. Y et this provides a stable foundation for the next step.

During this gpproach it should be kept in mind that this table should precipitate future
extengons of the system.

Appendix 1.6 The Level 2 Reference Model, Step 2:
Behaviour

The exiging structures can be enhanced both in a functiond or behaviourd way, the last
manner being more of fundamentd interest to the system engineer. Enhancements can be
implemented by inserting additiond layers between existing ones, such alayer representing the
redisation of a certain system requirement or part thereof. Insertion means that the data flows
reman primarily unchanged; incidentally, new data stores can be inserted in the Structure.

February, 1998 Page I-7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Functional enhancements are possible, especialy to accommodate information exchange with
the outsde world, the system environment. The ATT environment, being open in many senses,
does not only receive input from its sensors, but dso from many outsde sources, for instance
from neighbouring inter-operable systems. By the same token information has to be ddivered
to the neighbours. The existence of this information exchange is a given and hence stable, but
its detalled implementation may change over time, due to further information processng
refinements. Also incorporation of the recaived information is not necessarily trivid and may
require intricate computations. So the architecture should be reedy to facilitate the exchanges,
and not to obstruct future changes, which requirements can be met by the reference modd.

Behaviourd enhancements are more interesting and encompass a wide range of issues. The
mogt interesting ones are mentioned here, but they al share the condition that incorporation is
redised by defining an additiond layer in the proper place in the existing structure.

System sAfety is a close rdative of architecture definition and lack of attention to this subject
can seldom be compensated later in the life-cycle, because of the many things that have to be
consdered: rdiability to reduce the amount of falures, fail-safe measures to mitigate the
consequences of falures; fall-soft measures to give the system users the fadility to finish thelr
task properly (limp home facility); safety warnings, to inform the users timely that something
nasy is going to occur in the system eg. a patid falure, reduced functiondity etc.; safety
watchdogs to detect potential safety violations in due manner and at a proper time and to start
countermeasures, and so forth.

Hence, the incorporation of the full set of safety measures may drastically change the scene of
the reference modd.

Safety watchdogs, ensuring a safe Stuation independent of externd and internd positions and
eventud errors somewhere in the system, can be implemented by a layer that just does that,
separating the two layers and preventing undue influences from one layer to ancther. This can
work both sides: unsafe commands can be corrected and unsafe Stuation can be filtered and
can be corrected in a reflex manner: immediate response to correct the Stuation, without
waiting for the higher level sructure to react, as in the case of reflexes in the human body,
which are often necessary to prevent or to limit damages.

Also the other safety issues can be addressed in a amilar style, dthough it is difficult to
describe thisin agenerd way. Usudly, each system hasto solve these issues in its own way.

Security can be improved in the same way asis done for safety. Intruson can be detected by
authentication of entering information flows and screening of the contents.

February, 1998 Page I-8
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Proprioception is another issue. To clarify the term: Current systems, and information systems
in particular, are so complex, and certain fallures can be so dusive, that only advanced logging
of datafiles and memory, supported by awide variety of tools, can trap errors.

To illugrate the point: in a number of accidents, some with human fadities, software errors
were suspected, but could not be proven; e ectromagnetic interference might aso be the cause
(or one of the threads in the causa net), or even some spurious or intermittent hardware error.
Needless to say that thislack of anaysability will occur more often with increasing complexity,
if no measures are taken. This dtuation is compounded by the observation pertaining to
information systems, that software is often faling in an unanticipated way, and hence requires
potent tools for detection and further analyss. For this, among various other books [Wiener
1993]. The software dtuation is in sharp contrast to hardware failures, which can be
anticipated by means of various techniques, athough, regrettably, this is not dways done. For
instance, in the US Space programme, over many years, no catastrophic failures occurred in
orbit that were not anticipated beforehand; see the section on diagnostics in [Rechtin 1991].

Proprioception is meant to denote an area that differs from what is normally understood under
the term diagnogtics. The term diagnostics often conveys the idea that the investigation is only
darted, and debugging aids are only activated, after presence of the malady has been
detected. This may be too late or deadly insufficient. The most annoying errors are intermittent
ones, which are difficult to trap even in raivdy smple environments. Moreover, the
intricacies of their andys's become insurmountable in more complex environments.

Proprioception is more advanced, in the sense that it is a prime objective of the derivation of
the architecture, to enable early detection of the presence of a fault, and to supply sufficient
information concerning the whereabouts and the nature of the deviation on a (semi-)continuous
bass. Diagnostics can be implemented following the traditiona approach; proprioception, and
the implied link with andlyss tools, needs a fundamentdly different gpproach.

It must be clear that proprioception in the layered, and distributed, structure is fundamentaly
more convenient to implement and to use than in the * spaghetti’ case.

By doing s0 the behaviour of the system for its end-usersis not redly improved. Yet, to the
system maintainers, especidly the debuggers, the behaviour is improved and, by gradud
system improvements, the end-users will benefit in the long run.

Appendix 1.7 Conclusion

The man concluson is tha the levd 2 reference modd is an dtractive, not to say
indispensable tool to ensure that the control regime functions as expected, that it shows the
desired behaviour, has no behaviourd dde-effects and that the implementation can be
andysed for deficiencies.

February, 1998 Page I-9
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Additiondly, system evolution can be followed, without changing the basic sructure of the
sysem.

February, 1998 Page I-10
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX J SATIN REFERENCE MODELS

Three ITS reference modds have been defined for use in Europe, one each for Urban and
Inter-Urban Traffic Management and one for In-Vehicle systlems [SATIN AC13-PT7]. The
Level 3 and Leve 2 issues have been combined into one reference model for each major area,
and are summarised in Figure J.1 (see aso [SATIN AC20)).

Trip efficiency
Stretch Ahead

Driving/Steering
Peripheral

National Network City
Regional Network In-Vehicle Service Network
Link Local Area
Section Segment
Point -« > Point
Peripheral Peripheral
I nter-Urban Urban

FigureJ.1- SATIN Reference M odels

Figure J.2, Figure J.3 and Figure J.4 then expand these three reference model s into their set of
gods. The semantics of the models are based on the concept of a service, a user is not
interested in difficult control agorithms and prefers to view the system as a set of black boxes
each providing a number of services. Note that it may be necessary to define the higher layers
with additiond Level 3 Architectures when more than one authority isinvolved.

February, 1998 Page J-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Scope of Contral Objective Example of Services
4 | Trip Efficiency Efficiency of trip subject to Route selection
desired congtraints Circumvention of congestion
Freight management
Hazardous goods management
3 | Stretch Ahead Comfort of driver and Vehicle behaviour smoothing
passengers Comfort oriented information
2 | Driving/Steering Safety of vehicle, occupants, Traffic rule enforcement
cargo and environment Colligon avoidance
SdAfety oriented information
1 | Periphera Data collection and command | Callection of datawithin, and in
execution the vicinity of, the vehide
Control of vehicle systems

Figure J.2 - Reference model for In-Vehicle systems

Scope of Control Objective Example of Services
6 | City Co-ordinated policy Demand management
O/D edtimétion
5 | Service Network Service quality Public Trangport management
Revenue collection Parking management
Road pricing
4 | Loca Area Throughput optimisation Public Trangport regularity
Signd plan optimisation
Junction priority
Individua route guidance
3 | Segment Emission control Public Transport journey time
estimation
Dynamic speed control/advice
Autométic incident detection
2 | Point Road safety Traffic counts
Enforcement Signd st control
Pollution level detection
1 | Periphera Physica contact with road | Actuator Device Control
and traffic Sensor Device Control

Figure J.3 - Reference mode for Urban Traffic Management

February, 1998 Page J-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Scope of Control Objective Example of Services

6 | Nationa Network | Network Efficency Network Control
Hazardous goods Transit Management

5 | Regiond Network | Traffic flow Traveler Information Services
Incident Management | Network Monitoring Services
Re-routing Control Services

Route Guidance
Incident Management Services
Hazardous Goods Monitoring
4 | Link Throughput Link Traffic Monitoring
Optimisation Incident Verification
Speed Harmonisation
Lane Closure Management
Co-ordinated Ramp Metering
3 | Section Traffic Safety Driver Awareness Warning Services
Management Section Traffic Monitoring Services
2 | Point Logica contact with | Local Ramp Control Services
road and traffic Local Lane Control Services

Loca Traffic Monitoring Services
Loca Monitoring of Road Conditions
Locd Traffic Surveillance Services

Enforcement Services
1 | Peripheral Physcd contact with | Actuator Device Control
road and traffic Sensor Device Control
Vehicle Hagging Services

Figure J.4 - Reference model for Inter-Urban Traffic Management

February, 1998 Page J-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX K ENTERPRISE ARCHITECTURE

The concept of an Enterprise Architecture was introduced when preparing the Reference
Mode of Open Distributed Processng [ISO 10746], which describes an ‘enterprise
language' to represent a system in terms of interacting agents, working with a set of resources
to achieve business objectives subject to the policies of controlling objects.

Objects with a relation to a common controlling objective are grouped together in domains
which form federations with each other to accomplish shared objectives (e.g. enabling it to
determine security or management policies). Any such union mutualy contracted to accomplish
acommon purpose is termed a community.

Policies set down rules on which actions of which objects are permitted or prohibited, and
aso which actions objects are obliged to carry out. Policies may relate to, for example:

a) the use of resources accounting for resource usage. For example, resource usage rules,
defines the congtraints that may be imposed by externd:

regulatory bodies;
market demands;
environment;
depending on where the resources usageis:
public;
private;
third party

b) The ownership of resources. For example, transfer rules may be expressed in an
Enterprise Architecture to state the exchange of ownership and/or obligations between
resources.

¢) The membership of federations. For example, and Enterprise Architecture can include
domain rules that specify:

the membership of adomain;
the interaction rules between domains of the same type;
the domain naming rules.

d) The assgnment of roles to objects. For example, an Enterprise Architecture may need to
define organisation rules that date:

assignment of roles and responsbilities to resources within the organisation;

February, 1998 Page K-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

how members of the organisation are structured (e.g. hierarchy, isocracies);
An Enterprise Architecture may aso include business rules to express.

an enterprise as a busness entity;

accounting requirements,

drategic planning for the businessin order to fulfil its objectives.

€) Permitted interactions between objects holding different réles (i.e. access control). For
example, security rules may define

the réle-activity-object rdaionships, their integrity and confidentiaity requirements for
activities and objects,

the rules for detection of security thredts,
the rules for protection against security threats,
the rules for limiting any damage caused by any security breaches.

f) The responsbility delegated to objects. For example, delineation of authority rules are
used to assign:

privilegesto agents (trust);
permission and/or prohibition of performance actions of agents (obligation).

Actions that change policy (in that they dter the obligations, prohibitions or permissons of
objects) are termed performative actions. For example, giving a user system’s administrator
privileges or the creation of an object can be performative actions. Objects that are ligble to
initiate actions have an agent role, whereas those that only respond to such initiatives have
artefact roles.

An example of an Enterprise Architecture can be found in Appendix T.

February, 1998 Page K-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX L FEUNCTIONAL ARCHITECTURE

A Functiond Architecture provides a structure for the main functions of the system, though
attention should be paid to the behaviourd issues as well as the god oriented functions. The
Functiond Architecture is derived from the Level 2 Architecture, and should be developed by
applying decomposition techniques to arrive & a sufficient leve of detall.

Rules for decomposition can be found in many text books, e.g. [Hatley 1987 pp 130-8] and
[DeMarco 1978]. They can be summarised asfollows:

Each function should be decomposed into a limited number of sub-functions (as rule of
thumb 5 £ 2). This makes it easy for the developer to understand what is being stated, and
to be able to check the completeness of the set of sub-functions. The process must remain
intellectudly tractable.

The sub-functions should be a (approximately) the same leve of absiraction, and the same
leve of detall.

The sub-functions should be defined in such a way that the number of interactions
(exchanges of data between functions) remains at alow level. A high number of interactions
may sometimes be a symptom of a highly complex sysem, but more normdly it is a
symptom of insufficient effort being taken to keep the functiond architecture smple and
comprehensble. A high number of interactions will lead to a strongly linked ‘ spaghetti’
sysem where fault analyss, maintenance and function changes will be difficult, and faults
are frequent.

It isimperative that thereis hierarchical consistency between the levels of decomposition.

There are no hard and fast rules on how much detall should be given in the Functiond
Architecture, it will depend on its purpose. Since decomposition can continue down to the
detailed design, a decision has to be taken as to when it stops being an architecture and starts
to be a desgn. The more detall thet is given in the architecture, the less flexibility will be
available for the designers. Often the level of detal will be dictated by the needs of the
Communication Architecture, especidly for those system architectures that are intended to be
open.

Sooner or later most high level non-functiona requirements will be decomposed into low level
functiona requirements, in particular those connected with behaviour. The non-functiond
requirements should therefore be reviewed by the system architect to find those issues that can
be redlised by dlocating them to a (set of) sub-function(s) of the Functiond Architecture. By
performing this dlocation at this stage the designers will be less likely to forget the issues, and
will know where to address them.

February, 1998 Page L-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix L.1 Proposed Semantic

A Functiona Architecture may be made up of the following e ements:

A data flowis a conduit through which packets of information of known compostion flow.
Data flows can be represented by arrows:

>

A function is a process that transforms one or more incoming data flows into one or more
outgoing data flows. The function is executed on reception of incoming informetion.
Functions can be represented in the functiona diagram by, for example, “bubbles’:

()

A data store is a (time-delayed) memory function for information. A data store can be
thought of as a database, or any other structure for data accumulation.

A terminator is a net originator, or receiver, of sysem data. Its purpose is to mark the
boundary of the modd. Terminators are used to represent people, organisations and
systems that interact with the modelled system and can ke represented, for example, by

rectangles.

The dynamic behaviour of functions is modelled with the aid of control functions, control
flows and control data stores. Control functions are those functions that synchronise, or co-

ordinate, the data processing functions and/or other control functions. Control flows are
flow of the sgnas that trigger, or control, the sequence of processing. Control stores have
the same role as data stores. They can be represented by dotted bubbles, arrows and data

stores respectively:

o === ala m ==
1 |l

' ‘ alalalil !

® o mom

It should be noted that some CASE Tools use different symbols, and the case study in
Appendix T does not follow the above exactly.

February, 1998 Page L-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX MODP AND THESE GUIDELINES

ISO is preparing a standard for Open Distributed Processing (ODP): ISO/IEC 10746-1,
Reference Model of Open Distributed Processing (Committee Draft) [ISO 10746].
Meanwhile, CONVERGE-SA is promoting an architectura gpproach that is described in
these Guiddines, which is dso targeted a systems which are distributed and that should be
open. How do these two approaches relate to each other and where they differ?

The ODP Standard takes an object-oriented approach to the matter; these Guiddines do not
do this expliatly, but leave it to the desgners as whether to follow an object-orientated
methodology, or the more traditionad functional decompostion, or Structured Andyss
methodology. Although Object-Orientation can, at times, have certain advantages, the authors
of the Guidelines decided to promote Structured Analysis as being good practice and the basis
for an architecture and a viable project, primarily because it is well understood by everyone,
included those who now work in an Object- Oriented manner.

These Guiddines ded with the subject of architecture development only, and do not cover the
more detailed design phases of the development life-cycle. The ODP Standard, however, ams
to cover the same subject area but with more attention being given to the implementation. Is
there afundamenta difference in thinking about architecture between the two documents?

Architectural Approach

These Guiddines define the term architecture, explains the rationde behind it and describes
how to create one. the ODP document dso uses the term architecture, but without a clear
definition or an indication of its rationde (there is a reference to a ligt of definitions, including
the word ‘architecture’, in another document). However, whatever the definition, the
objective of an ODP architecture can only be deducted by inference; in the Guiddinesiit is
gated. On reading the ODP Standard there seems to be no fundamenta difference in thinking
as to wha architecture development embodies, athough these Guidelines do pay more
attention to system evolution and growth, in an attempt to avoid the tatic system viewpoint
that has been detrimental for many systems, and is more or less ingrained in the usud
development methods. For example, both the ODP Standard and these Guidelines
acknowledges that many system requirements are not properly addressed in the standard
development methods, and hence tend to be forgotten.

The ODP Standard uses five viewpoints, whilst these Guiddines make use of a number of
different sub-architectures; including a reference modd. The following is a discusson of the
gmilarities and differences in gpproach under the headings of the ODP viewpoints.

February, 1998 Page M-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The Enterprise Viewpoint

The ODP Standard recognises the Stuation in which large-scae, distributed systems, are used
by a number of organisations to accomplish a common purpose; in ODP terms this is a
‘community’. The Enterprise viewpoint is introduced to address these issues, and there are no
fundamentd differences between it and these Guiddines Level 3 Architecture; both have the
same function.

The Information Viewpoint

In ODP parlance this represents the information objects and their relationships, where
information objects are abgtractions in the red world, in the ODP system, or in other
viewpoints. Information objects can be expressed in terms of lower leve information objects,
and, ultimately in atomic information objects, hence data dements.

The information objects can be podtioned at the leve of these Guidelines Functiond and
Information Architectures, everything addressed by the information language can be found
there. This should not come as a surprise, because whichever method is used, the functiondity
in the system needs to be expressed in terms of functions and information, athough the ODP
Standard keeps rigidly to the use of objects. However, a the level of a system architecture,
where abdtraction is at the highest leve, the differences are minimal, as are the advantages of
explicitly working with objects since, by definition, every item mentioned at this level can be
caled an object. (Differences do appear a the lower levels of desgn, where ‘object’ has a
more rigorous definition because of its need to be supported by compilers, subroutine
packages and databases.)

The Computational Viewpoint

In the ODP Standard this is where the interactions between the objects are captured, but
without mentioning the details of the interaction. This is comparable to usng levels of
decomposgtion in Structured Analyss terms. The ODP Standard naturally follows a strict OO
approach.

The Engineering Viewpoint

This captures the digtribution of the system, one of the prime objectives of the ODP Standard.
Thisis andogous to the Physicd Architecture in these Guidelines, which addresses distribution
of functions and information, their replication, and their interactions.

The Guiddines Communication Architecture might be included in the Engineering Viewpoint,
but this is undear; maybe communication is taken for granted. This may be suitable for
‘normd’ communication, this is definitdly unwise for something like EDIFACT, which needs

specid expertise.

February, 1998 Page M-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The Technology Viewpoint

These are statements about the actua components, from which the distributed system is
composed. These Guiddines date that an architecture would normdly be technology
independent.

Reference Models

The main difference between the two documents is the absence of Reference Moddls in the
ODP Standard. ODP does not mention such an entity, and these Guidelines explicitly address
them, indeed requires them. This difference may be caused by a difference in thinking about
architecture, or a least a difference in emphasis. These Guidelines acknowledge the need for
control, and aso the evolutionary features of ITS, which necesstates some deep thinking
about the fundamentd structure of the system and its functiondity. A Reference Modd is a
good way of describing these issues.

Moreover, athough the ODP Standard mentions the issue of ‘object behaviour’ throughout,
this does not fully work through to behaviour a the system level. Thus system security is
mentioned, but system safety is not. Degradability, recoverability, locd autonomy and related
issues are not at dl mentioned; maybe in ODP these issues are not expected to play a mgor
role. The Reference Mode of these Guiddines is able to ensure that the roots of these issues
are planted for further germination during the development process. This cannot be achieved
using the ODP method, and in the field of trangport it is essentid that such issues of system
behaviour are considered to ensure proper operation under adverse conditions.

A Reference Modd describes the manner in which the first leve of decompostion of the
sysem functiondity is performed. This fird decompostion, and the condderation of
behavioura issues is of prime importance. Much of the success of the future system, be its
functiondity, behaviour, evolution, flexibility or maintainability depends on just this sep.

Object Modelling Techniques

Object moddling techniques do not address the higher system levels, such as the Enterprise
Viewpoint, and hence do aso not address system behaviour and evolution. Object modeling
is functiondly equivdent, in terms of a working system, with Structured Andysis. It sarts at
these Guidedlines Levd 1 Architecture and progresses down, in a structured way.

State trangtions, as incorporated in object moddling, are not mentioned in these Guiddines.
Thisis not necessarily a defect, because the concern of these Guiddines is the development of
an architecture, in particular the higher levels. State trandtions, representing control behaviour
a the micro-leve, are not fundamenta to the architecture of a large scde system, dthough
they may become rdevant for the architecture of asmdler sysem.

February, 1998 Page M-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX N INFORMATION ARCHITECTURE

Data moddling embodies two different viewpoints the user view and logical database
modeling. These two are the highest two of the three levd ANS-SPARC mode for
information moddling; the third level represents the physical database structure. The objective
of the Information Architecture is thus to describe the set of user views and to provide the top
level gtructure of the information base.

A user view describes the needs of a particular user or group of users, and corresponds to
part of the real world as perceived by them. It describes the purpose of a certain information
entity, the meaning of the attributes, congraints, dynamic behaviour and anything dse (eg.
privecy, security, timeliness, update rules, authorisation) that might be of importance, but not
necessxily related to the Structure of the Information Architecture. When the system is
operationa the user view corresponds to how the user can manipulate the information entity,
irrespective of the logica and physical structure. The user views provide the foundation for the
redlisation of the User Needs.

The Information Architecture captures the user views in the top-leve logical structures and the
data dictionary. It is recommended that a forma representation such as Entity Relaiond
Diagrams are used to show the top-leve logica modds.

For those systems which will be centred on a large database of information the creation and
maintenance of the data dictionary is of vita importance. A data dictionary is a database
used for data that refers to the use and structure of other data; that is, a database for the
storage of the meta-data (data that defines and describes data dements) of an information
processing system. Data dictionaries have been primarily used in database desgn and
implementation. However for maximum benefit a data dictionary system can be used
throughout the whole of a sysem development life-cyde, including functiond andyss and
operational management.

The process of controlling and co-ordingting data definitions is named data administration
[Newton 1993, Holloway 1988]. In a computer-based system the data dictionary meta-data
will be stored in a data dictionary database; the software that manages this database is named
the “data dictionary system” , which is specificdly desgned to collect such definitions, to
generate reports and to enable the performance of automatic consstency checks. Any
incong stencies brought about by incompatible user views will have to be resolved by the Data
Adminigtrator. All this makes a common data dictionary an important asset for corporate
awareness of the existence and value of data. A data dictionary system can be atool to spread
knowledge on common data definitions.

February, 1998 Page N-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

A data element is a unit of data for which the definition, identification, representation, and
permissible values are specified by means of aset of attributes[1SO 11179-x], e.g.:

data eement name, and short name (if dlowed);
data element diag(es) (if necessary, to comply with a predefined naming convention);
data element definition;

data element description (including examples of use, forbidden use, warning on ambiguities
etc.);

format;

domain (discrete or continuous);

meaning of domain vaues (if goplicable);

congraints,

mandatory/optiona conditions,

privacy considerations, authorisation, classfication etc.

uniqueness (necessary for keysin adatabase), rules for the generation of unique identifiers,

adminigtrative information, e.g. when added, where used, owner of the definition, history of
changes.

Appendix N.1 Information Repository

Many different projects develop large information processing systems. A lack of avareness of
common data between these projects can result in different systems for the same tasks. A lack
of understanding of the meaning of common data can dso result in the incorrect use of data
This is the reason why, in a didributed information environment, a common information
repogtory serves asasngletool for handling dl definitions.

When combined, the Information and Functiond Architectures provide a fundamentd
description of the red world environment for which the sysem must be developed. The
information repository is a database application used to store meta-data about sharesble
data, and provides a means of creating and maintaining a conastent overview of dl the datain
asysem, thusit could contain:

an overview of the sysem functions, where each function is characterised by a name,
purpose and reference to its inputs and outputs (the messages); the current ligt of function
for road transport ITS can be found in [SATIN D004-PT3].

February, 1998 Page N-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

the overview of the messages in the system, the compostion of messages as a collection of
basc dataitems and the cross reference between messages and functions; the current list of
messages for road transport I TS can be found in [CORDEX AC23]

an overview of the rlevant entities in the red world, ther interrelationships and the groups
of basic data-items that describe them; these will describe the structure of the various

databases of the ITS.

the overview of the basic data elements, where each data element is characterised by a
name, purpose and a description of domain.

Information repositories are themsalves databases and therefore their contents can dso be
described in a data model. Figure N.1 illusrates the overdl sructure of the SATIN
information system dictionaries in an ERD diagram.

Information
Architecture
(top level)

Storage

Data Groups

Data Group
Dictionary

Functional :
Architecture !
(Toplevel) !
! Communication
. ' Architecture
Functions . (Top level)
Function . Transmission
Dictionary . M essages
' Message
Data | tems : Dictionary
Data Item '
Dictionary '

FigureN.1 - Overall structure of an information repository

Further information can be found in [SATIN-AC18].

February, 1998
Issue 1.0

Page N-3

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX O ASSESSMENT BY A REVIEWER

It is important to redlise is that a project system architecture Deliverable may not contain the
complete system architecture. If these Guiddines have been followed in detall for a large
system then the total documentation produced will be very large indeed, and far more than is
acceptable for an officia Ddiverable. In these circumstances the Ddliverable will be atop-leve
overview of the complete work. Other projects, however, may not wish to put as much effort
into their system architecture work, and the Deliverable will represent their complete work: this
may be perfectly vaid for certain projects, especidly if the system issmal (eg. in-vehicle).

Whilst the assessment process described in Section 7 will take a project some time to perform
in detall, a reviewer will be asking the same types of questions of the Deliverable but have
much less time to perform the task. However the objectives of the two parties are different.
The project will wish to know whether that particular system architecture is suitable for their
particular needs, or maybe it is trying to make a choice from a variety of possble options; a
reviewer, on the other hand, is more concerned with being able to advise the Commission that
the project is proceeding in a sensible manner.

General Issues

Thereisagood engineering ‘rule of thumb’ that says if something looks right then it probably is
right; the corallary is aso true, namey that if something looks wrong then it probably iswrong.
When reading a system architecture Deliverable one can very quickly get afeding for whether
the authors have understood what they were doing, and have proceeded in a systematic and
logicd manner.

Specific Issues

By looking for answersto the following questionsiit is possible to build up an opinion as to the
overd| effectiveness of the system architecture Deliverable.

Has the project taken a systematic approach to the creation of its system architecture?
What is the system concept?

What are the main functiond requirements?

Isthere evidence that afull list functiona requirements exits?

What are the main non-functiond requirements?

Is there evidence that afull list non-functional requirements exits?

Isthere acontext diagram (e.g. PASSPORT Diagram)?

Is the system boundary clear?

February, 1998 Page O-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Has a prdiminary safety andyss been performed? If not, why not?

What types of architectures have been developed (eg. Level 3 & 2 Reference Models,
Levd 1 Functiond, Informeation, Physical, Communication and Enterprise Architectures -

they may not dl be necessary)?

Do the Levd 3 and 2 Reference modds satisfy the functiond and non-functiond
requirements?

Isthere congstency between the Level 3, Level 2 and Level 1 Architectures?

Does the Functiond Architecture make sense (eg. what goes in must come out, what
comes out must be created from what goesin)?

Doesthe Functiona Architecture satisfy the functiond requirements?

(Road mode only) Does the Functiona Architecture make use of the CORD Function List?
If not, why not?

Isthere hierarchicd consistency in the decomposition of the Functional Architecture?

If the system needs a ‘database’ is there an Information Architecture? (Note: not all
sysems will need afull Information Architecture)

Isthere aPhysical Architecture?

Does it look as though the Physcd Architecture is condgtent with the Functiond
Architecture?

Is there a Communication Architecture?
Does the project need specific andards? Do these standards exist?
Isthe architecture open? If not, why not?

Is the project likely to produce the system that they are intending to produce with the
system architecture presented in the Ddliverable?

February, 1998 Page O-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX P THE PASSPORT CROSS
Appendix P.1 Introduction

The PASSPORT Cross modd is used to relate four groups of system elements using matrices.
When being used to check the consstency between a Functiona Architecture and a Physica
Architecture they are asfollows:

Functiona Elements (FE) - The lowest specified leve of (sub-)functions (including terminators)
contained within the Functiond Architecture.

Information Sets (IS) - The information that passes between the Functiona Elements.

Physica Elements (PE) - The lowest specified leve for the units contained within the Physicd
Architecture.

Communication Facilities (FE) - These cover dl the means of transmission of data between the
Physical Elements.

The four necessary matrices may be podtioned in the following “cross’ format to aid various
congstency and safety analyses, as shown in Figure P. 1.

The contents of each of the matrices of Figure P.1 are discussed later.
Clearly there are four explicit matrices to congtruct, namely:
Functiona Elements/Information Sets (FE-1S),
Communication Fecilities/Information Sets (CF-1S),
Communication Facilities’Physica Elements (CFPE),
Functiond Hements/Physicd Elements (FE PE),

The matrices FE-1S and CF-PE are sometimes referred to as connection matrices, whilst the
matrices CF-1S and FE-PE are sometimes referred to as projection matrices. It is essentia
that the axes of these four matrices reflect the ordering presented in Figure P.1 (e.g. the matrix
FE-1S has “Functiona Elements’ as its horizontd axis and “Information Sets’ as its vertica
axig). It isdso useful to arrange the axes on each matrix so they dign when placed in ther
“cross’ formation (e.g. the matrix FE-IS has “Functiond Elements’ at the bottom and
“Informetion Sets’ a the right). This conformance will help when these matrices are
compared for consistency.

February, 1998 Page P-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

S50 =@ 3 =0 3> —
»w —~o n

Functional Elements Communication Facilities

FigureP.1 - PASSPORT Cross M odel

Each of the matrices should be congtructed independently even though any one may be
generated from the other three (see dso Note below). This independence will be essentid for
the congstency checks. Entries in the connection matrices should record the direction of
flow usng an Input and Output notation. For the FE-1S matrix this indicates the source and
snk of data, for the CF-PE matrix this refers to the property of the communication facility
(transmitter (O), receiver (1) or dua communication (10)). Entries in the projection matrices
should take the form of atick (v').

Thus atypica matrix would appear as shown in Figure P.2.

C1 C21 | C22 | C23 | C31 | C32

Pl O
PO.1.1 | O
PO.1.2 I O
PO.1.3 I O
PO.2.1 I O
P0.2.2 I O
PO.3 I

Figure P.2 - Example CF-PE

February, 1998 Page P-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

In Fgure P.2 we read the Input/Output nomenclature as, for example “physcad eement
P0.1.3 takes its input from communication facility C22 and places its output on
communication facility C2.3".

NOTE - This Appendix only describes the very badc st of fadilities offered by the
PASSPORT Cross, and for this reason a dightly different approach to that described in
[PASSPORT D9] needs to be taken when cregting the Cross itsdlf.

For example, in the dtuation when many (sub-)functions are performed by one Physicd
Bement there will be no visble Communication Fecilities down which to tranamit the
Information Sets that pass between these Functiond Elements. It is therefore necessary to
cregte ‘dummy’ Communication Facilities down which dl these ‘internd transfers pass. There
can ether be one dummy Communication Facility for dl internd transfers, or one for each
Physcad Element containing more than one Functiond Element.

Appendix P.2 Connection Matrices

The two connection matrices describe the connections of the Target of Evauation. The first
connection matrix defines the functiond modd in terms of Functional Elements (FE) and
Information Sets (IS) upon which they operate. The matrix, FEIS, is completed by
indicating which information sets are being used by each functional ement. The second
connection matrix defines the physcd architecturd mode in terms of Physical Elements (PE)
and Communication Facilities (CF) that join them. The matrix, CF-PE, is completed by
indicating which communication fadlities permit the physcd dements to communicate with
each other.

Thus the FE-1S matrix describes the exchange of information between functiond dements a
the logicd level and the CFPE matrix describes the various physical characteristics associated
with the connections.

Appendix P.3 Projection Matrices

The two projection matrices relae the ements of the functiond modd to the dements of the
physicd architecturd modd.

The matrix FE-PE identifies which physcd dements are being used to implement each
functional dement. The matrix CFI1S identifies which communication facilities are being used
to tranamit each information st.

It is the ability of the PASSPORT Cross mode to relate the two different modedls of the
system that makes this modd ling technique so valuable in architecture andysis.

February, 1998 Page P-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

For architecture andysis it is important to know the dlocation of functiond dements and
information sets to physicad dements and communication facilities because a functiond
architecture can be implemented in various ways. Examples are;

Functional replication - when this redundancy technique is gpplied one functiond dement
is implemented more than once to increase rdiability and avalability. For software,
diversty and other precautions are necessary. (See hardware duplication below.)

Data replication - with this redundancy technique some of the data can be replicated, to
improve response time and to increase the reiability and availability of the data involved.
The disadvantage is the potentid incondstency between the replicated data (See
hardware duplication below.)

Physical replication - when this redundancy technique is gpplied some of the physicd
elements can be replicated, to improve reiability and avalability of the sysem. (See
hardware duplication below.)

Communication replication - when this redundancy technique is gpplied some of the
communication facilities can be replicated, to improve rdiability and avalability for the
system. (See hardware duplication below.)

Hardware duplication or alternative pathways - these redundancy techniques are used
to maintain operation of the system during hardware bresk down.

Hardware sharing - when this re-use technique is gpplied one hardware component
performs multiple functiona dements.

Distributed functional elements - & one extreme al the functiona ements can be
concentrated on one computer, a another extreme the functiona eements can be
distributed on various computers with considerable distance between the systems.

Distributed information sets - one, a number, or dl of the information sats can be
centralised or decentralised, dependent on the requirements of the system.

Appendix P.4 Consistency Checks

There are two classes of check:

Intra-matrix - these checks are performed upon each matrix independently to confirm that
it iswdl-formed.

Inter-matrix - these checks are performed across the set of matrices as a whole to
confirm that they fully relate to each other.

February, 1998 Page P-4
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix P.4.1 Intra-matrix Consistency Checks

Connection Matrices

Conggtency checks can be gpplied to the connection metrices according to the following rules:
The FE-ISmatrix

The following congstency checks can be gpplied to the FE-1S matrix:

MCC1. Each internd functional dement must have a least one Input information set
and at least one Output information et

MCC2: Each externd functiond dement (system terminator) must have ether an Input
information set or an Output information set.

MCC3: Each information set must provide an Input to a functiona dement and an
Output from afunctiond eement.

The CF-PE matrix
The following consistency checks can be gpplied to the CF-PE métrix:

MCC4. Each internd phydcd dement must have a least one Input communication
facility and at least one Output communication facility.

MCCE5: Each externd physicd dement (architecturd terminator) must have ether an
Input communication facility or an Output communication facility.

MCCE6: Each communication facility must provide an Input to an physicd dement and
an Output from an physcad dement.

Projection Matrices

Consgtency checks can be applied to the projection matrices according to the following rules
The FE-PE matrix

The following congstency checks can be gpplied to the FE-PE matrix:

MCCT. Each functiond eement should be implemented by a leest one physicd
element (dlowing more than one in the case of architectura redundancy).

MCCS: Each physcd dement should support at least one functional element (allowing
more than one in the case of architecturd re-use).

The CF-ISmatrix
The following congstency checks can be gpplied to the CF-1S matrix:

MCCo: Each information set is carried by at least one communication facility (dlowing
more than one in the case of architectura redundancy).

February, 1998 Page P-5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

MCC10: Each communication facility sugtains a leest one information sat (dlowing
more than one in the case of architectura re-use).

Appendix P.4.2 Inter-matrix Consistency Checks

The basic property of the inter-matrix consstency checks (for asimple system) isthat for each
entry in FE-IS there should be an entry in CF-1S on the horizontd, this should have an entry in
CF-PE on the verticd, which itsdf shoud have an entry in FE-PE on the horizontd. Thisfina
entry should be verticaly below the origind entry in FE-IS (see Figure P.3). Here we present
severd different forms of inter-matrix consstency checks each requiring a different amount of
resources and each providing a different level of confidence in the soundness of the Target of
Evauation modelled by the matrices of the PASSPORT Cross.

Fuhctional Elements Communication Fadlities

Figure P.3 Inter-matrix Consistency Checkswithin the PASSPORT Cross M odel

Clockwise Consistency Checks

The theory here is thet, from the functiond dement view point, in a well-formed design, the
physcd dements which support a given functiond eement, will be connected to those
communication facilities which sugtain the information sets flowing into and out of the functiond
element. Thefollowing 5 steps should be undertaken:

Step 1 Sdect afunctiona eement.

February, 1998 Page P-6
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Step 2: Sdect dl information sets which ether act as Input to this functiond dement or
act as Output from this functiond dement or both.

Step 3: Sdect dl communication facilities which sugtain the information sets sdlected in
step 2.

Step 4: Sdect dl physicd eements which are connected by the communication facilities
selected in step 3.

Step 5: Sdect dl functional dements embodied by the physical dements sdected in step
4.

Notice that each communication facility, sustaining an information set which ether flowsinto or
out of the given functiond eement, is asociated with at leest two physicd dements.
However, in generd, only one of these physica eements will embody the chosen functiond
edement. This means that the st of functional eements resulting from the application of the
above 5 steps should contain the origind functiond dement but will invarigbly contain other
functional dements. Thus the following check condtitutes the clockwise consstency check:

111 The lig of functiond eements identified in sep 5 aove must contain the
function chosenin step 1 above.

It is aso0 possible to begin the dockwise tracing by sdecting any of the system dements and
tracing around the PASSPORT Cross modd in aclockwise direction. Thusthe generic 5 step
plan would be:

Step 1: Sdlect a system eement.

Step 2: Usng the matrix FE-IS for a chosen functiond eement, CF-IS for a chosen
information set, CF-PE for a chosen communication facility or FE-PE for a
chosen physicd dement sdect dl sysem dements rdated to the system dement
sdlected in step 1.

Step 3: Following around the sequence of matrices FE-IS, CF-1S, CF-PE, FE-PE, in
that order, sdect dl system eements related to the system elements sdected in
step 2.

Step 4: Following around the sequence of matrices FE-IS, CF-1S, CF-PE, FE-FPE, in
that order, sdect dl system eements reated to the system eements selected in
step 3.

Step 5: Following around the sequence of matrices FE-IS, CF-1S, CF-PE, FE-PE, in
that order, sdect dl system eements related to the system elements sdected in
step 3.

February, 1998 Page P-7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

MCC11.1.1 Thelig of sygem dements identified in step 5 above must contain the system
element chosen in step 1 above.

Anti-clockwise Consistency Checks

The theory here is tha, from the functiond dement view point, in a wel-formed desgn, the
information sets which provide input and output for a given functiond dement, will be
sudained by those communication facilities which are connected to the physica dements
which support the functiond dement. The following 5 steps should be undertaken:

Step 1: Sdect afunctiona eement.
Step 2: Sdect dl the physca dements which embody this functiond element.

Step 3: Sdect dl the communication facilities which are connected to the physica
elements selected in step 2.

Step 4: Sdect dl the information sets which are sustained by the communication facilities
sdlected in step 3.

Step 5: Sdect dl the functiond dements which use, as dther Input or Output, the
information sets selected in step 4.

Notice that each information set, sustained by a communication facility which is connected to
any physcd dements embodying the functiond eement, is associated with a least two
functiond dements. This means that the set of functiond dements resulting from the
goplication of the above 5 steps should contain the origind functiond dement but will
invariably contain other finctiond dements. Thus the following check condtitutes the anti-
clockwise consstency check:

MCC11.2 The lig of functiond eements identified in sep 5 aove must contain the
function chosen in step 1 above.

It is dso possble to begin the anti-clockwise tracing by sdlecting any of the sysem dements
and tracing around the PASSPORT Cross model in an anti-clockwise direction. Thus the
generic 5 step plan would be:

Step 1: Sdlect a system eement.

Step 2: Usng the matrix FE-PE for a chosen functiond dement, CFPE for a chosen
physcd dement, CFIS for a chosen communication facility or FEIS for a
chosen information set sdect dl sysem eements rdated to the system dement
sdlected in step 1.

February, 1998 Page P-8
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Step 3: Following around the sequence of matrices FE-PE, CF-PE, CF-IS, FE-IS, in
that order, sdect dl system eements related to the system elements sdected in
step 2.

Step 4: Following around the sequence of matrices FE-PE, CF-PE, CF-IS, FE-IS, in
that order, sdect dl system eements related to the system elements sdected in
step 3.

Step 5: Following around the sequence of matrices FE-PE, CF-PE, CF-IS, FE-IS, in
that order, sdect dl system eements related to the system elements sdected in
step 3.

MCC11.2.1 Thelig of sygem dements identified in step 5 above mugt contain the system
element chosen in step 1 above.

Clockwise and Anti-clockwise Consistency Checks

The theory here is that since both the clockwise consistency checks and the anti-clockwise
congstency checks produce a set of system eements which should contain the origind system
element but that each check invariably produces a different set, then it makes sense to
strengthen the accuracy of the individua checks by combining their output sets.

MCC11.3 The intersection of the lig of sysem dements identified in step 5 of he
clockwise congstency checks and the list of system dements identified in step
5 of the anti-clockwise congstency checks must contain the origind system
element chosen for both ther step 1s.

Clockwise and Anti-clockwise Input and Output Consistency Check

The theory here is that, from the functiond dement view point, in a clockwise consgstency
check, in a wel-formed desgn, the physcd dements which support a given functiond
element, will be connected to those Input, or Output, communication facilities which sugain the
information sets acting as Input to, or Output from, respectively, the functiona dement. Thus
in step 4 of the clockwise consstency checks the extra, undesired, physica eements which
were salected because each communication facility is associated with two physcd dements,
one for which it carries an Input and one for which it carries an Output will beignored. Once
agan we will invariably produce ligs of functiond eements which contain the origind functiond
element but the list produced by sdlecting just the Input information setswill be different to the
list produced by sdlecting just the Output information sets. Thus by combining these lists we
may srengthen the accuracy of the individud checks. A amilar argument can be applied to
the anti-clockwise consgstency checks. Again it makes sense to combine the lists produced by
the respective anti-clockwise Input and Output checks firgtly with each other and then with the

February, 1998 Page P-9
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

ligt produced by the clockwise Input and Output checks. The following 19 steps should be
undertaken:

Step 1: Sdect afunctiona eement.

Step 2: Sdect dl information sets which act as Input to the functional element selected in
step 1.

Step 3: Sdect dl communication facilities which sugtain the information sets selected in
step 2.

Step 4: Sdect dl physcd dements for which the communication facilities, selected in Step
3, act as Input.

Step 5: Sdect dl functional dements embodied by the physical dements sdected in step

4.

Step 6: Sdect dl information sets which either act as Output to the functiond dement
sdlected in step 1.

Step 7: Sdect dl communication facilities which sugtain the information sets sdlected in
step 6.

Step 8: Sdect dl physcd dements for which the communication facilities, selected in Step
7, act as Output.

Step 9: SHect dl functiond dements embodied by the physicd eements selected in step
8.

Step 10: Select dl the physca dements which embody the functional eement selected in
step 1.

Step 11: Sdect dl the communication facilities which act as Input to the physical dements
sdlected in step 10.

Step 12: Sdect dl the information sets which are sustained by the communication facilities
selected in step 11.

Step 13: Sdect dl the functiond dements for which the information sets, sdlected in step
12, act as |nput.

Step 14: Sdect dl the communication facilities which act as Output to the physical eements
selected in step 10.

Step 15: Sdect dl the information sets which are sustained by the communication facilities
selected in step 14.

February, 1998 Page P-10

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Step 16: Sdect dl the functiond dements for which the information sets, sdlected in step
15, act as Output.

Step 17: Takethe intersection of the set of functional dements sdected in step 5 and step
0.

Step 18: Takethe intersection of the set of functiond eements sdected in step 13 and step
16.

Step 19: Take the intersection of the set of functiond dements selected in step 17 and step
18.

The consistency check here can now be stated as:

MCC11.4 The lig of functiond dements identified in ep 19 mugt contain the origind
functional ement chosenin step 1.

Unfortunatdy, especialy when sysem terminators are included in the selection process, there
will be ingances of empty sets of eements created during the above scheme. This will mean
that in some Stuations the sets of functiond dements identified in steps 17 - 19 will be empty.
In these cases it will be useful to trace back through the rdevant steps to identify the last non
empty ligt of functiond dements and use thislist as a subdtitute for the empty list identified.

Matrix Construction Consistency Checks

In the previous forms of inter-matrix consstency checks there was lots of replication in the
tracing process. For example, ance an information set is passed between two functional
eements then the tracing of each of these functional dements will include this information set
and in turn the communication facility that carries this information set and so on. Here we
uggest an dternative which will only compute each interrelaionship once and theresfter
goped to this computation for the required vaidity.

The theory here is that from the four basic PASSPORT Cross matrices, namely FE-IS, CF-
IS, CF-PE and FE-PE it is possble to construct two new matrices FE-CF and PE-IS. The
information embodied in these two matrices can then be scrutinised for well-formedness of the
origind PASSPORT Cross modd.

There are however, four ways to construct each of the two new matrices.

The matrix FE-CF can be constructed by:

1) Having the functiond dements as the focus and using the matrices FE- IS and CF-1S.

2) Having the communication facilities as the focus and using the matrices CFIS and FE-1S.
3) Having the functiona € ements as the focus and using the matrices FE-PE and CF-PE.

4) Having the communication facilities as the focus and using the matrices CFPE and FE-PE.

February, 1998 Page P-11
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The matrix PE-1S can be constructed by:

1) Having the information sets as the focus and using the matrices FE-1S and FE-PE.
2) Having the physicd dements as the focus and using the matrices FE-PE and FE-IS.
3) Having the information sets as the focus and using the matrices CF-1S and CF-PE.

4) Having the physica eements as the focus and using the matrices CFPE and CF-1S.

It might be useful to condtruct each matrix in the four different ways and then to compare the
results.

Other Inter-matrix Consistency Checks

There may be other more complex inter-matrix congstency checks but these will certainly
rase issues of advantage againgt the resources required. Certainly an automated checking tool
would further this discusson and a CAE todl is the subject of the ESPRIT project
COMPASS.

Conclusion

We have presented severd different forms of inter-matrix consstency checks each providing a
different level of confidence that the matrices of the PASSPORT Cross fully relate to each
other. These checks are dl syntactic and it would require some form of semantic check to
provide 100% confidence in the vaidity of the PASSPORT Cross matrices. Dependent upon
the degree of confidence required a choice must be taken as to which of the inter-matrix
congstency checks should be gpplied.

February, 1998 Page P-12
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX Q BEHAVIOUR ANALYSIS TOPICS

The following topics should be considered when performing a behaviour andyss on the
system architecture; not al topics will be revant top al projects.

Non-functional requirements - the objective of this andyss is to assess the degree to
which the non-functiond requirementsin Appendix G have been achieved.

Communication System Capacity - the objective of this andyss is to assess the
Communication Architecture for its ability to serve both current and future needs. 1ssues
will indude:

- expected sze, complexity and number of messages

- communications bandwidth.

Degraded Mode of Operation - the objective of this analysisisto assess the support that
the system architecture providesfor:

- syslem safety impacts of in-vehide falures
- gystem safety impacts of infrastructure failures
- maintenance activities

| ssues to be considered will include the provison of:

graceful degradation of functiondity
- fal ot
fal sofe

fail operationa

Feasbility and Risk - the objective of this andyss is to assess the feashility of
deployment, and to identify the risk associated with it. This andyss must include:

- risk identification
- rikraing
- rik mitigation

Issues to be considered will include (see dso [QUARTET D53)):
- non-provison dueto technical, cost or inditutiona reasons
- non-implementation of part of system architecture
- sarvices not purchased by the end user

- technology placing limits on market penetration

February, 1998 Page Q-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

- achitecture not commercidly viable
- limited take-up (eg. of in-vehide equipment)

Performance of Equipped Vehicles - the objective of thisandydsis to assess the benefit
that the users will receive from in-vehicle equipment. 1ssues can include:

- User trave time reduction
- Sofety
- Convenience
- Non-user travel time reduction
- Nonuser ssfety improvement
Particular thought should be given to vulnerable road users and disabled road users.

Accuracy of Traffic Prediction Models - the objective of this analyssis to assess the
support that the system architecture gives to the prediction of near future locdised traffic
conditions. 1ssues might include:

- number of loop detectors
- fraction of probe vehicles
- fraction of routes known by the system.

Efficiency of Traffic Monitoring and Control - the objective of thisandydsisto assess
the expected vaues of :

- Incident/accident detection time

- demand pesk detection time

infrastructure failure detection time

detection of lane closuretime

Efficiency of Traffic Management Centre - the objective of this andyds is to assess
the time interva required for the traffic management centre to receive reports, compute
reactions and disseminate information. Issueswill include:

- information sources

communication links (e.g. latency)

- daaaccuracy and timeliness

drategy dgorithms.

February, 1998 Page Q-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Accur acy of Position L ocation - the objective of this analyssis to assess the support that
the system architecture gives to accurately placing a vehicleslocation in the network.

Effectiveness of Information Delivery Methods - the objective of this andyssis to
assess the support that the system architecture givesto :

a) the ddivery of time criticd information (e.g. to vehicles VM S etc.)

b) easy to use user interfaces

February, 1998 Page Q-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX R THE CONVERGE ANALYSIS TOOL
Appendix R.1 What can it do for you?

The CONVERGE System Architecture Andlysis Tool has been designed to gve:

System designers
System integrators
System owners

the ability to estimate the potentia performance of Integrated Transport Environment (ITE)
system sarvices while the architecture is being developed. In particular:

The impact of a certain choice of achitecture, or the certain choice of function, can be
assessed

The expected performance differences between various possible architectures can be
investigated

Sensitive elements of an architecture can be identified, i.e. when smdl changes in one
section cause large variations in the expected responses.

The CONVERGE System Architecture Analyss Tool will give you confidence that the
architecture you have designed will produce the effect that you desire.

The CONVERGE System Architecture Andyss Tool is dso able to maintain a consstent
view of your architecture at a number of levels of detall, with the ability to produce printed
documentation if required

Appendix R.2 How does it work?

Appendix R.2.1 Summary

The approach taken by CONVERGE-SA is amilar the that which has dready been used
successfully in many other engineering disciplines, where an “architecture level andyss’ is
used to evduate the peformance of a new desgn very ealy in the life-cycle. The
CONVERGE System Architecture Analysis Tool can be consdered to be made up of four
different phases.

1) A Functiona Architecture model is based on the functions in the CORD Function Ligt.
When complete it may consst of four levels of abstraction, which have been checked for
their saif-congstency.

- TopLlLevd

- ArealLevd

- Function Leve

- Sub-Function Leve

February, 1998 Page R-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

2) By referring to existing systems, or the experience of experts, hypotheses can be made
about the performances of each sub-function; dternatively the performance can be taken
from the results obtained from field trid on red systems. The sub-functions, together with
their described performance are being brought together into a centra repository and being
maintained by the CONVERGE-SA project. This repostory is available for use by al
Framework 1V Transport Telematic projects.

3) The performance indicators described for each sub-function are used by the smulator to
predict the performance of the current mode!.

4) Each gpplication of the modd can be documented on an application by gpplication basis.

It should be noted that snce the smulator depends upon both the current CORD Function
Ligt, and the results from previous field trids, it is not yet possble for the tool to be fully
utilised by the current non-road transport mode projects.

Appendix R.2.2 The meta-model approach

If we were to use the dynamic flow of data as the bass for the smulation, it would be
necessay to define precisdy the input-output relationships for each function. The result would
be far too complex to smulate successfully, even assuming tha the relationship coud be
found. CONVERGE has instead taken a “meta-moded approach” in which the smulation is
done in the parameter domain rather than in the time domain. As a result the output of the
modd will be expressed directly in terms of the characteristics of the exchanged data, rather
than being derived from the use of ddidics in a classc time-related amulation. Figure R.1
shows the difference between a modd and a meta-modd. The top figure smulates the sub-
function usng the vaues of the inputs and outputs, whilst the metamode transforms the
characterigtics of the inputs and outputs.

Functional Architecture
PT vehicle + Priority

iti request
position SF5.25 a
Message content Arrival Prediction JSFVINGUNIEa e

Meta-model
I/0O transform fo
Attributes Al A e Attributes

*Refresh time *Prediction accuracy
*Position accuracy *Horizon lenath

*Not located vehicles *Refresh time

O et ———————— *Not located vehicle

FigureR.1- Mode and Meta-M odel

February, 1998 Page R-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix R.2.3 Building up the model

Although the model can be built up top-down, bottom up or middle-out, we will here describe
the top down agpproach.

Top level Model

Thetop levd modd isvery basic and is likely to be the same for most ITE systems. Figure R.2
shows a User interacting with a systlem within an environment.

ul,userl Vel X,SYSTEM

Demand ’N

Performance

Environment,Env_A

FigureR.2 - Top Level Model
Area Level Model

The ITE system is then broken down into its various Aress, as defined in the CORD Function
Lig: in Fgure R.3 we see tha the System will consst of Traffic Management (Area 3) and
Public Transport Management (Area 5). The various data that will be passed between these
two areas are then added to the modd!.

11 <A VVer1 X QYSTF

Eg NAMAan $

Darfarmane

N

=l
Demand.DemandTC TGELLT GREITEN EtlEGh Per for mance.Per for manceT]
P traff dm -
Pri aiven
o PT infln .
PT dm jQ Bustop dispja
PT manac.A0 PT servic

FigureR.3- AreaLevel Modelling

February, 1998 Page R-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Function Level Model

Per for mgnce.Per formanceT

naannri NemandT

P traff dm Pri dive

DRI do

PT info.PT infoA Reductions.R(?‘:lJ’ctionsA

Reduct

Inters traff ctrl FO) Pri aiven Pri aivenA

PT pri re
= | *
Area ctrl fe

PT monit

P traff dmd.P traff dm

Traff dm
Traff dmd.Traff d

*|

Obs state

Net traff ctrl FOR

FigureR.4 - Functional Level Modélling

Each Area is then divided into the Functions that it will be making use of, as defined in the
CORD Function Ligt: in Figure R.4 we see that, for this ITE system, Traffic Management will
be making use of Intersection Traffic Control (Function 3.2) and Network Traffic Control
(Function F3.3).). The various data that will be passed between these two areas are then

added to the modd.

Page R-4

February, 1998
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Sub-Function Level Model

PT_info,PT_infoACT Reductions,ReductionsACT]|

PT_monit
Inters traff_ctrl,FO302

PT_pri_req

Area_ctrl_ref

P_traff_dmd,P_traff_dmdACT |*

Traff_dmd
Traff_dmd,Traff_dmdFC

“Traf_dmdTraff_dmdFCT

Area dirl_ref Area drl_refFC

PT_pri_reqPT_pri_regfCT

SHec PT_pri

Perc_loc PT

Int_ctrl_comp S030202 5Ta SI_I' ni_state mon,S030201_ Obs stateObs stateFC

ODs state_acc

S Pred_acc LN Salevel

NI Pri_given Pricrity,_gvenFCT

PILPT_red
Int_cirl_act,S030203_ Pri_lev
Ppri lev
(i

Figure R.5 - Sub-Function Modelling

Each Function is then divided into the Sub-Functions that it will be making use of, as defined in
the CORD Function Ligt: in Figure R.5 we see that Intersection Traffic Control will be making
use of Intersection State Monitoring (Sub-Function F3.2.1), Intersection Control Computation
(Sub-Function F3.2.2) and Intersection Control Actuation (Sub-Function F3.2.3).). The
various data that will be passed between these two areas are then added to the model.

Appendix R.2.4 Field Trial Results

Whenever an hypothesis is made or an evaudtion is done on an ITE sysem data should be
recorded about the performance of each of the Sub-Functions. Experience has shown that the
most effective method of recording this data is to maintain a card for each scenario under
investigation. Figure R.6 shows the results from one scenario of Intersection Control
Computation from the DRIVE I QUARTET 5T project. It should be noted that if the
performance of this sub-function had aso been defined for another project, then the designer
could choose which of the two sets of data is likely to most resemble the circumstances that
will be encountered by the new system.

February, 1998 Page R-5
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

Inputs
Sat_Lev Medium OR High
Obs_state_acc Very Accurate
Pred_accuracy <20%
Perc_loc_PT 100%
PT _freq Medium

Internal Parameters

Roll_hor 120s
Comm_reliab 100%
Req_pred_hor >90s

Environment Parameters
PT_res_lanes Often
PT_confl Few

Prediction accuracy additionally evaluated for 60s
horizon =<10%

Corresponding outputs

P_jt_priv_red
P_jt_PT _red
P_pri_lev
P_fuel_red

P_gas_red

16%

20%

100%

NULL

NULL

FigureR.6 - Fidd Trial Data Card

The data from each scenario can then be collated and used to define the input-output
relationships for each Sub-Function using a set of basc Building Blocks (BB) to form a flow-
chart like structure, or by means of adecison table.

A repository of the BBs and Sub-Functions, complete with their fidd trid deta, is being
maintained by the CONVERGE-SA project. This can then be used by other projects to build

up modds of their own particular ITE sysem.
Appendix R.2.5 Simulation

Simulation takes place as a sequence of steps during which:

Dataisfetched for the input of each Sub-Function
The Sub-Function processes the input data according to the BB flow-chart or decison

table.

The output datais placed on the Sub-Function outputs

The state of the Sub-Functions is updated
The gate of the Functions is updated

The gate of the Areasis updated

The state of the System is updated

February, 1998
Issue 1.0

Page R-6

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

During the smulation the user can navigate around the modd, interact with the modd, read
parameter values and record output data.

Appendix R.3 How can | obtain_the Architecture Analysis
Tool?

The Architecture Analyss Toal is based on Object-Oriented techniques and consists of two
parts.
The CONVERGE-SA System Architecture Tool, which condsts of the BBs the
Repository and documentation [Franco 1997).

The software platform upon which to runiit.
The former is free of charge and may be obtained from the CONVERGE-SA project
(Contect: Gino Franco a gino.franco@miz.it).

A license is needed in order to use the software plaform. This can be obtained from
PrimeSoft (Contact: bruno@polito.it).

Specid conditions, reserved for TAP projects, are dso avalable, such as a time limited
licence. Contact PrimeSoft for more information.

February, 1998 Page R-7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX S SATIN DOCUMENTS

Fgure S.1 shows different sources of information developed or used by SATIN that could be used during the system architecture development, the full list of the
documents produced by SATIN can be found in Section 8.

Recommendations to projects

Dissemination of architecture results {
Workshops

Structure:
Conte_xt requwer_nents >
Functional requirements

Requirements Capture

Non-functional requirements

Requirements

Y

Tool:

SATIN D004 - PT6

Example:

SATIN AC13 - PTs 1-9
1 \

Reference Model

Functional Architecture

'- - 91 Information Architecture

Tool: Review of DATEX AC18 =

e p—

T e

Context Diagram

'

Functional Decomposition

Rk Data Dictionary) i

i
8

Physical and Communication
Architectures

Figure S.1 - Information sour ces

Other sources of information

Define concept and System characteristics

<« - = Tool: SATIN D007 - PT1

Glossary: to be updated throughout the
whole architecture development

<« - - Tool: SATIN AC20
Example: SATIN AC13 - PT7

« - - Tools:
SATIN D004 - PT6
Hatley and Pirbhai
CORD list of functions D004 - PT3
Examples: SATIN AC13-PTs1-9

< - - Tool: Hatley and Pirbhai

February, 1998
Issue 1.0

Page S-1

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX T WHISPER CASE STUDY

WHISPER
System Architecture

NOTE: This case study provides examples of the outputs from the System Architecture life
cycle; it isnot intended to be complete.

February, 1998 Page T-1
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix T.1 System Concept

Appendix T.1.1 Vision Statement

The management of adjacent shopping precincts have observed that the accessibility of ther
aress for disabled persons is below what is desired for them; in particular blind people have
great difficulty when they are on their own. Because the precincts wish to be open to
everybody, they want a technica solution to improve accessibility of their areas, and provide a
safe mode of trangport for disabled persons, including those who are blind, throughout and
between the shopping precincts, both within the shops and between the shops. (For the sake
of amplicity the term *shop’ includes dl other facilities that are open to the public within the
precinct.)

Appendix T.1.2 Identification of Users

Disabled Persons - who will be carried by the whedchairs, disabled people may have
mohility, visud, auditory or tactile limitations, necessitating the need for specid equipment;

Other Pedestrians - who will share the precincts with the whedchairs,

WHISPER Operator - who will supply and maintain the whedchairs, and the centrd
database of information;

Precinct Managers - who will provide dl the necessary information about the precinct to
the operator, and ingal and maintain the infrastructure;

Shop keepers - who will provide information to the operator, via ther precinct
management, about opening times and the good and/or services that they supply;

Road Authority - who maintains the adjacent road infrastructure;

Legd and standardisation bodies - legd and standardisation issues to be identified after the
system architecture has been developed.

Appendix T.1.3 Mission Statement

To develop a WHedlchair for Intelligent and Safe Portage in Equipped Regions (WHISPER?)
capable of guiding itsdlf around a series of pedestrian precincts which has been provided with
intelligent beacons at suitable locations. The whed chair will not cause harm to the passenger or
to other pedestrians, be capable of avoiding specified areas (e.g. work stes), and of crossng
aroad at suitably equipped locations without any assistance from the passenger.

IAll ideas concerning, and the concept of the project WHISPER are exclusive and copyright to the DRIVE
Il projects PASSPORT | & 11 (V2057/8)

February, 1998 Page T-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix T.2 System Characteristics (examples)

Appendix T.2.1 System Overview

Description of the physical environment

The area where the WHISPER system will be applied, the WHISPER area, conssts of a
number of shopping precincts, and, from the viewpoint of WHISPER, these precincts are
separated by public roads, on which motorised traffic is dlowed. These roads are equipped
with pededtrians crossngs, each with a traffic light controller (PC-TLC). Each precinct may
have shops located on one or more levels. The tota area accessible for a whedlchair will be
bounded and the boundary will have to be discernible by the whedlchairs.

The precincts will have specid car parking places for dissbled persons, a which points
WHISPER whedchairs will be made available. In addition, WHISPER whedchairs will be
made avaldble a sdected man entrances, with paking places for nonWHISPER
whed chairs,

Description of the WHISPER wheelchair

A WHISPER whed chair will be equipped with batteries, equipment to communicate with PC-
TLC and the WHISPER beacons, internad storage, processor(s), and a communication
interface with the whedchair user (who may have visud, auditory or tactile limitations). The
internd storage will hold a database which contains al the rdevant information about the
shopping precinct(s), beacon locations and road crossings, the information provided by its
user, and gatistica information about the use of that whedlchair.

The whedchair will be cgpable of navigating to any location within the WHISPER areg, as
commanded by the passenger, under the guidance of beacons and with the assistance of the
PC-TLCs.

The whedlchair will be congtructed in a manner that will produce a safe ride for the passenger,
and be provided with sensors to detect any inadvertent contact with other pedestrians or
objectsin order to produce a safe outcome.

The WHISPER beacons

The beacons will provide location data to the whedcharr, together with some information

about the immediate vicinity, including that necessary for the safe passage of the whedlchair.

Temporary obstructions can be programmed into the beacons as ‘no go’ areas. Beacons are
ableto sgnd steps (which may be dangerous, especidly to blind people), the status of any lifts
in the vicinity, and the ultimate boundary of the WHISPER area.

The Pedestrian Crossing - Traffic Light Controller (PC-TLC)

February, 1998 Page T-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The whedchair will communicate with the PC-TLC to negotiate a safe passage across the
road. Measures have to be taken that during the communication, which may last for some
minutes, the actud whedchair is not mixed up with another one. The PC-TLC hasto ensure,
by means of sensors, that the traffic has actudly stopped.

Appendix T.2.2 Multi-Disciplinary System Characteristics

Functions:

The principa functions of the WHISPER system are described in the system concept (see
above). The communication functions have to be defined, notably the one with the PC-TLC,
which is under the ownership of an independent organisation.

Each wheechair, beacon, PC-TLC and ‘shop’ will have a unique identification, to be issued
by the system operator.

Each whedchair is able to determine its route through the WHISPER area in a near-optimd
way, a least in a manner such tha the whedchair user remains confident in its functioning. The
route can be influenced by the user based on the sequence of shops to be visited, the shortest
trave time, or aminimum number of road crossing and/or level changes.

Maintainability:
Except for the maintenance of the equipment, the norma operation of the system should not

require additiond staff. Each whedchair must return to one o the officid parking bays after
use for battery recharge and database update (if necessary).

The whed chairs and the beacons will be provided, and maintained, by the locd authority.

The centrd database will be maintained by specid gaff. This maintenance will comprise dl the
changes in the WHISPER aea, and the generation of maintenance and management
information.

The timely update of the whedlchair databases, and the timely reprogramming of one or more
beacons, isthe responsihility of the system operator.

Organisation:

Each participating pedestrian precinct in the WHISPER areawill provide and maintain its own
set of beacons. The PC-TLCswill remain the responghbility of the Road Authority.

Judicial:

Each precinct manager will be ligble for damage caused by the improper functioning of the
WHISPER sysem or one of the beacons, including inaccurae information, under his

responghility.

February, 1998 Page T-4
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The Road Authority controlling the PC-TLCs will be lidble for damage caused by the
improper functioning of the PC-TLCs. To this end both parties shdl record information about
the performance of their respective equipment, and analyse this information regularly for

proper operation.
Information:

The WHISPER system will depend upon reliable and up-to-date information, especialy about
WHISPER area layout and temporary changes. Procedures will have to be defined to ensure
this, independent of the availability of key personnd in the shops or the precincts.

The information which is of direct rdevance to the passenger must be provided in a user-
friendly manner, suitable for a person with the indicated disability.

The system will accumulate information for gatigticd, maintenance and managerid purposss,
adso with the intention of improving the operation of the WHISPER system. Information will
a0 be collected about incidents and complaints provided by the whedlchair users, the shop
keepers and the pedestrians, but they will not be stored in the main WHISPER database.

Communications:

The form of the beacons must be confirmed with a prototype, to ensure the absence of
interference and to ensure the undisturbed communication with the wheelchair.

Communication of the whedlchair with any one of the beacons should not cause any changein
the progress of the whedlchair (hence a smooth movement).

Synchronisation with the PC-TLCs is essentid for a safe passage. This communication must
ensure that the whedchairs will not be mixed up, thet the time for crossing of the whedchair is
adequate, and that waiting times do not become prohibitive.

Electronics:

Power Supply:

Safety:

Security:

Electromagnetic Compatibility:
Mechanical Sability:
Degraded Modes of Operation:
Testability:

Flexibility:

Future Expansion:

February, 1998 Page T-5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The system has to be prepared for future expanson in the sense that new wheechairs,
beacons, PC-TLCs, new shops and precincts may be added to the WHISPER area, with an
additiond increase in the amount of information in the WHISPER database and increasing
demands on the navigation dgorithm. A reasonable estimate is an increase by factor of two in
any of the above parameters. Such an expanson should not lead to organisationd,
performance and maintenance problems and should not necessitate a fundamenta change in
one of the system components.

(Note: some of the factors in the example above are not addressed, but should be considered
in any full architecturd study.)

Appendix T.3 System Requirements (examples)

Appendix T.3.1 Context Requirements

It must be possible to implement the WHISPER system in al the pedestrian precincts that
are prepared to comply with the commercid, technica and operationd requirements.

The systlem must be cgpable of operating with equipment from a variety of manufacturers.
The system architecture shdl support an evolutionary implementation Strategy.

Appendix T.3.2 Functional Requirements

The whedchar shdl be adle to communicate with passengers who may have visud,
auditory or tactile handicaps.

The whedlchair shdl be able to determine a near-optima route according to the sequence
of destinations specified by the passenger.

The whedchar shdl be able to communicate with PC-TLCs in order to synchronise asafe
crossing of the road.

The whedchair shdl contain a database, which will contain dl the information about the
WHISPER aea This database will be used during communication with the user, during
route determination and during navigation.

The whedlchair shdl be able to transport persons up to 120 kgs in weight.

A WHISPER beacon shdl be ale to communicate with any one of the whedchairs.
Madfunctioning of the communication with the beacon shal be detectable by the whedlchair
and be reported to the system operator.

The whedchair shdl be equipped with motion sensors which will permit dead reckoning
over adistance of 100m with an accuracy of 0.5m.

The beacon information shdl be adequate to determine the location of the whedchair with a
precison of 1m.

February, 1998 Page T-6
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

The beacons shall be separated from one another by a distance of between 20m and
100m.

Appendix T.3.3 Non-Functional Requirements

Security

The database can only be modified by the sysem manager with data provided by
authorised persons (only).

Performance
Communication between the whedlchair and a beacon shdl take no longer than 0.5 sec.

The database in each whedchar must be updated a least once every 24 hours (not
continuoudy)

Safety

The sysem shdl prevent one PC TLC from being confused with another, and the
whedchair shdl only communicate with the PC_TLC a whose locaion it is.

The PC-TLC shdl ensure that the motor traffic has come to a complete stop on both sides
of the crossng before permitting the whedchair to cross (This condition may need a
pedestrian green period to be extended in order to permit the whedchar to complete a
crossing.)

System expansion

The system architecture shdl permit expansons in the spatid dimensgon ad in the various
other system parameters by afactor of two, without any degradation of system functiondity
or behaviour or any necessary change of system components.

Environment

The system shall be capable of operating in the temperature range - 10°C to 35°C, humidity
range 10% to 90%, and under al potentid rainfal conditions. Use of the system will not be
permitted during conditions of snow or ice.

Etc.

Appendix T.3.4 System Boundary

Figure T.1 is PASSPORT Diagram of the proposed WHISPER system. In particular it
identifies the syssem boundary, with the terminators on the left and right locating the points
where the system interacts with its environment (i.e. & the boundary of, but within, the
system). The diagram shows dl the main flows of data necessary to produce the system
requirements.

February, 1998 Page T-7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Local Precinct Precinct Manufacturer Software
Council Manager Manager House
' v v
Map Possible Transponder Manuals Algorithms
Destinations Locations & Programs
Wheelchair -
Monitoring | |——p| | Wheelchair .
Sensors Behaviour
Velocity — > Wheel Motor
- Data Controllers
> Required
Destination |—
Passenger
HMI
> Restart
Command Status Passenger
Information HMI
Receiver
From | . Pedestrian Nucleus of
Crossing crossing status W H | SPER
Transponders
A Signalling p| Pedestrian
Information
. > Position HMI
Receiver Information
From
Location .
Transponders » Obstruct'l on)
Information Arrival & Transmitter
. to
n —P> .
Negg;au on Crossing
a Transponders
Bumper > Impact
Sensors Information
|
Internal
Databases

FigureT.1 - PASSPORT Diagram for WHISPER

A full Prdiminary Safety Analyss for WHISPER can be found in [PASSPORT D9].

February, 1998
Issue 1.0

Page T-8

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix T.4 Level 3 and 2 System Properties - Reference
Models

Appendix T.4.1 Level 3 Layered Reference Model

There are three separate authorities associated with the WHISPER system, with the following
magjor concerns that need to be reconciled between them:

WHISPER Operator (wheelchairs) - whedchair navigeation and safety
Precinct Owner (beacons) - whedlchar navigation and safety
Traffic Authority (PC-TLC) - road traffic safety and whedlchair safety

At a meeting of these three authorities it was decided that, should there ever ke a conflict
between road traffic safety and whedchair safety, then road treffic safety would teke
precedence. It was aso agreed that safety would take precedence over norma operation.
This resulted in the following Reference Modd for the Leve 3 Architecture:

Functions
Layer 2 Navigation
Layer 1 Whedlchair safety
Layer O Road Traffic Safety
February, 1998 Page T-9

Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

Appendix T.4.2 Level 2 Layered Reference Models

Wheelchair Layered Reference Model

The functions of the whedlchar were divided into the following Leve 2 Layered Reference
Modd, in accordance with the Level 3 Reference Modd. Each layer must be able to perform
it function without needing the layer above it. Note that it has been found necessary to solit

safety into two layers, one needing more facilities than the other.

Functions

Layer 7 User interface - information display and
passenger requests

Layer 6 Route planning and Route Control

Layer 5 Exception Handling - safety and emergency
measures

Layer 4 Controlled crossing - with PC-TLC

Layer 3 Autonomous navigation - via beacons and
dead reckoning, navigation errors

Layer 2 Database management

Layer 1 Badc Safety - system eror detection,
emergency stop

Layer O Communications - beacons, PC-TLC, whed
drive motors, sensors, data |/O

Beacon Layered Reference Model

The functions of the beacon were divided into the following Level 2 Layered Reference

Modd, in accordance with the Leval 3 Reference Modd.

Functions

Layer 1

Database management - location and vicinity
data

Layer O

Communications - whedchair, data 1/O

February, 1998
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

PC-TLC Layered Reference Model

The functions of the PC-TLC were divided into the following Level 2 Layered Reference
Modéd, in accordance with the Level 3 Reference Modd .

Functions
Layer 2 Synchronisation protocol
Layer 1 Communications - wheelchair
Layer O Normal operation - traffic and pedestrians

Appendix T.5 Level 1 Architectures

Appendix T.5.1 Enterprise Architecture

The various businesses associated with the WHISPER system are related to each other in the
manner shown in Figure T.2.

February, 1998 Page T-11
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

OBJECT : WHISPER Community

OWNED BY :

MANAGED BY : WHISPER Community Board (WCB)

OBJECT : WHISPER Area

OWNED BY :WHISPER Area Board (WAB)

OBJECT : Road

OWNED BY : Road Auth.

MANAGED BY : WHISPER Operator (WO)

MANAGED BY: Road Auth.

OBJECT : Shopping Precinct

OBJECT : Wheelchair

OBJECT:WHISPER DB

OWNED BY : Precinct Owner

OWNED BY : WAB

OWNED BY : WAB

MANAGED BY : Precinct Manager

MANAGED BY: WO

MANAGED BY: WO

OBJECT : Shop OBJECT : Beacon

OWNED BY :

OWNED BY :
Precinct Owner Precinct Owner
MANAGED BY : MANAGED BY :
Shopkeeper Precinct Manager

Characteristics Properties

Communication

Properties

Communication

Properties

Communication

OBJECT : PC-TLC

OWNED BY : RA

MANAGED BY : RA

Properties

Communication

Safety Regulations

FigureT.2 - Enterprise Architecture for WHISPER

February, 1998
Issue 1.0

Page T-12

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix T.5.2 System Structure - Logical Model

Functional Architecture

Using the PASSPORT diagram (see Figure T.1) and the Reference Model for the Wheelchair,
it is possible to produce the top level Functiona Architecture for each of the layers. Figure T.3
shows the main flow of data up through the layers and the main flow of commands down
through the layers. Each layer ether takes in data from the environment, or recelves data from
the layer below it; sometimes this data is just being passed on from the layers below that one.
Each layer performs one or more functions using this data which create output data and/or
commands which may be used directly, or passed down for use by the lower layers.

Each layer should then be developed separatdly and Figure T.4 shows the context diagram for
Layer 4 “Controlled Crossng with PC-TLC”. The function has been further decomposed into
its sub-functionsin Fgure T.5. This shows that once the arrival at the correct PC-TLC has
been confirmed, the whedchair makes a request to cross and then walits until it receives a
sgnd that saysthat it is safe to cross. The act of crossng then begins by passing commands to
the Autonomous Navigation layer; the details of the crossing, such as the width of the road a
that point, are taken from the Precinct Layout Data. Once the crossing has been completed a
sgnd is st to the Route Determination and Control function so that further commands may be
given.

February, 1998 Page T-13
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

User User
—> T e
Requests Communication Responses
Progress 1 Destination
Report ' Seguence
V A 4
Precinct Route
La out(s)__> Determination

y and Control

' Navigation

' Commands
Error___| Exception

Conditions Handling
1
Current 1 Validated Navigation

Status ' Commands

h 4
— Controlled Request to
. —
PC-TL C_> Crossing PC-TLC
Commands :
Current ' Augmented Navigation
Status ' Commands

Whed and) Autonomous

Beacon Data Navigation
[]
' Wheel Motor
' Commands
\ 4
Unsafe Basic
s e——
Conditions Saf ety
1
' Emergency
' Commands

Communications

Beacon, Sensor, 1 Wheel Motors,
Data Input * Reports Output
\

FigureT.3 - Top-Leve Functional & Control Architecturefor the Wheelchair

February, 1998 Page T-14
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Exception
Handling
Current Validated Navigation
Status Commands
WHISPER
Commands
p» Controlled «— | |AreaLayout
PC-TLC Crossing |
Request PC-TLC Data
Current Augmented Navigation
Status Commands
Autonomous
Navigation
FigureT.4 - Context Diagram for Layer 4
February, 1998 Page T-15
Issue 1.0

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

Validated Navigation commands

Exception \e

Handling

d
|

Failure to locate
PC-TLC

Initiate
Crossing

Finished crossin

Layout

. PC-TLC Data
Arrival
Detection
Status Data
Search Arrival
Confirmation
ort safe conditions Failure tc
receive safe
Crossing conditions
Permission
Request safe Request >
crossing equ Status Data

WHISPER Area

Status Data

Current and

Finished Target Location

Status data

Current location Autonomous

A

FigureT.5 - Decomposed Functional Architecturefor Layer 4

February, 1998
Issue 1.0

Page T-16

CONVERGE-System Architecture

Guidelines for the Development and Assessment of ITS Architectures

I nformation Architecture

The main items of data needed for the WHISPER system will be stored in one or more
databases. Figure T.6 shows he top-leved rdationships between the data items without

consdering their physica organisation.

WHISPER
Area DB

managed by

M anagement

consists consists
#f Of
managed

Data

incorporates

separated
Wheelchair Q:ftfhztszi L by Precinct by,\ Road
l A4
Data Data Data Data
consists _
of using
Maintenance Beacon PC-TLC
Data Data Data
managed
Authorised by u Y
Staff Access I SDh:IZ
Data
described
sells provides by
Article Service Sh(_)p .
Description

FigureT.6 - An Information Architecture for WHISPER

February, 1998
Issue 1.0

Page T-17

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix T.5.3 Physical Model

Physical Architecture

Figure T.7 shows the top-level physicd architecture for the Whedchar and the Beacons. It
shows that the Whedlchair will use 5 processors connected to a bus, with each processor
performing on or two of the man functions The functiondity has been split in this manner in
order to provide the fail-soft attributes implied by the Whed chair Reference Modd.

Route Planning Controlled
and and
HMI Exception Autonomous
Handling Navigation

Communications

Database
Management

/ Wheelchair
A

Beacons

FigureT.7 - A Top-Leve Physical Architecturefor WHISPER

Communication Architecture

The communication link between a whedchair and the beacons should include the following
properties:

wirdess with a norma working range of 1-2 m; it should have a sharp cut-off a arange
10m.

amaximum trandfer of 10 KB of data should take place in less than 0.5 sec.

the link must be capable of operation in dry, wet, dusty and dirty conditions. It need not be
able to work in conditions of snow and ice.

Appendix T.5.4 System Structure - Behavioural

Thefollowing are some behavioura characteristics that should be exhibited by the WHISPER
sysem. Note tha dthough they are lised here under the heading of "non-functiond”
requirements, many of these high-levd behavioura characterigics will ultimady be
implemented by low-levd "functiond" requirements. At this gage in the life-cycle, it isfar less

February, 1998 Page T-18
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

important as to whether a requirement has been listed as "functiona” or "non-functiond", than
that it has been at least recognised to exist.

Whedlchair passengers.
adidoguethat is easy to follow and understand.

the passenger must fed safe a dl times. In particular dopes of greater than 10° must be
avoided.

the batteries must be capable of a norma use for a least 4 hours operation without
charging.
Other Pedestrians:

should the whedchair inadvertently hit a pededtrian it must stop. The speed of the
whed char must be such that no injury will be inflicted in this Stuation.

Wheelchair Operator:

the sfety-rdlated sub-systems of the whedchar should be designed to have ether a
probability of failure of less than 10-2 per year of operation, or less than 10-2 on demand.
(SAfety Integrity Levd 2 - obtained from the Prdiminary Safety Andyss [PASSPORT
D9)).

Precinct Operators:
the beacons should be designed to have a probahility of falure of lessthan 10-2 per year

any new information given to the Whedchair Operator must be available to the whedchair
passengers by the beginning of the next day.

Traffic Authority:

drivers of vehicles must not detect any dhange in the operation of the pedestrian crossing
when it is being used by a WHISPER whed chair.

Security:

each database management syslem must be able to validated the authority for any changes
that are made.

congderation should be given to the need for the tracegbility of modifications to the Centrd
database.

the contents of the Whed chair and Beacon databases must remain consstent with that of
the Centra database at dl times.

February, 1998 Page T-19
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

congderation must be given to a possble conflict between the requirement for mutua
condstency between the databases, with the requirement to update the Central database
with new information.

congderation must be given to the possible attempt by unauthorised persons to change the
contents of the Whedchair and/or Beacon databases - possble including the use of
physica means of protection.

it must be possible to detect the physicad movement of a beacon without the corresponding
change being made to the databases.

February, 1998 Page T-20
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

APPENDIX U BACKGROUND INFORMATION

Appendix U.1 Introduction

This appendix introduces concepts that have been partly or not covered in the main documen.

It ams at introducing new concepts that could stimulate the reader’ s interest.

For a proper understanding of the terms used during the development of an architecture, a set
of definitions has to be given to facilitate a common understanding. Each definition is followed
by an explanation about what is meant and how the term relates to other termsin the set.

The regular way to present a ligt of definitions is the dphabeticad order, which permits easy
access. This organisation has, however, the disadvantage that each definition is presented in
isolation and full understanding of the definitions can only be achieved only by studying related
definitions smultaneoudy. So the definitions are gouped in the following categories, which
permit easier reading and understanding.

The following categories are used:

1

Traffic control organisation related definitions including:

a) control regime;

b) thetraffic environment;
c) reference modd;

d) sarvice,

€) system,

f) thelTE.

. System-related definitions incdluding:

a) sysem;

b) indtantiation;

C) System concept;

d) system characteristics,

e) artefact;

f) proprioception.

Functiondity related definitionsincluding:
a) god oriented functiondity;

b) supporting functiondity;

C) system factors.

System architecture related definitions including:

a) congruct.

Architectural aspects definitions including:

February, 1998
Issue 1.0

Page U-1

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

a) digribution, functiona digtribution;
b) replication, functiond replication;
c) god conflicts,

d) survivahility;

€) locd autonomy;

f) continuity of operation;

g) control exertion.

6. System deployment rdated definitions including:
a) operations,
b) management;
C) mantenance;
d) change managemern;
€) capacity management;
f) avalability management;
g) problem management;
h) verson management;
i) performance management;
j) configuration management.

7. Integration rdated definitions including:
a) integration.

8. Sygsem requirements rdated definitions including:
a) system requirements,
b) functiond requirements,
¢) non-functiona requirements;
d) qudity requirements.

9. Additiona system engineering definitions induding:
a) expertise domain;
b) gpplication domain;
C) system adminidration;
d) sysem archive,
€) message,
f) systemadtic, systemic;
g efficacy, efficiency, effectiveness,
h) holidtic view, ontologicd view.
Note: The European Procurement Handbook for Open Systems (EPHOS), issued by the
European Union has a Glossary (volume 2, edition 1994.). Unfortunatdy, this

February, 1998 Page U-2
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

glossary is not geared towards system engineering and misses dl the terms pertaining
to system architecture. Hence the EPHOS definitions are just marginally taken into
account.

Appendix U.2 Definitions

Appendix U.2.1 Traffic Control Organisation Related Definitions

a) Control Regime - a control regime is an independent part of the red world with a
separate control objective and a separate responsbility. A control regime is mostly
indicated by the term "management”, which indicates the control regime in an enterprise.
Examples of control regimes in the traffic environment are inter urban traffic management,
urban traffic management, public trangport (management), in-vehicle management, freight
and fleet management, hazardous goods management, parking management, emergency
management and possibly others.

The term control regime is introduced because of its meaning in the traffic context: one of the
very fundamentd characteridtics of the ITE is, tha many different control regimes have to
be integrated into one system, each regime having separate responsbilities and optimisation
criteria, which are sometimes conflicting with the criteria of other control regimes. In the
ITE there is not ae sngle top authority, as is normd in the busness environment; this
sysem s hybrid dso in the control sense.

b) The Traffic Environment - the collection of al traffic rdated control regimes. This
embarks upon the various management functions, sometimes with conflicting gods or
gpproaches, that do exist in the traffic environment.

¢) Reference Model (layered reference mode for control regime description) - areference
modd is a layered mode that represents the control structure embedded in a control
regime, eech layer in the modd fulfilling a sub-god of the contral regime. The Structure
represented in such a reference modd needs to show gability during the life time of the
sysem. Completeness is dso a prime feature of such a modd. Reference moddls are not
necessaxrily layered, but in the case of a control regime they usudly are.

d) Service (or: user service) - asarviceisauser oriented contribution to the redisation of the
god of one of the layersin areference mode. The collection of servicesin alayer is meant
to consolidate the god of thet particular layer.

e) System (ITE (sub)system) - the system is an entity with a predefined objective, introduced
to redise tha part of a control regime, or collection of control regimes, that can be
supported by some form of automation. A system consdts of the system artefact and the
system factors (see related definitions).

February, 1998 Page U-3
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

f) The ITE (Integrated Transport Environment) - the ITE is the integrated collection of 4l
sysemsfor traffic management and related control regimes.

Appendix U.2.2 System Related Definitions:

a) System - a system is a collection of elements, aso cdled parts, that are interrdlated and
that possess properties different from the collection of properties of the individuad parts and
show behaviour that does only exis a the system leve.

Other definitions emphasise the collection of parts and ther interrdaionship; the definition
given emphad ses the emergent properties. System behaviour has been included as well.

b) Instantiation (system ingantiation) - an ingtantiation of an architecture is a system, smdl or
large, that complies with dl the Structures, rules, etc. that are defined in the architecture for
that system family. Hence dso a subsystem of an ingantiation can be an indantiation in
itself. Normdly the term is gpplied to those (sub)systems that redise a certain part of the
objectives of the overdl system. Also the architecture used in the system, the ingtantiation,
can be an daboration of the generd architecture and hence can be seen as anindantiaion
of the architecture.

c) System Concept - the system concept is the basic description of the system as integrated
from the pergpectives from al contributing expertise domains. The development of asystem
concept is a basic requidte for the devedopment of system characteristics and system
requirements. If this step is not taken, the integration of the different ideas of the various
experts will take place during requirement capture and it is much more difficult to resolve
the issues there. The more articulated the system concept, the more proficient the following
steps can be taken.

The system concept is primarily written from the view-point of the problem owner, the person
or organisation that want a certain problem, or part of it, to be solved in acertain manner.
The sysem concept is doman independent and has to be comprehensble for dl
contributing experts.

d) System Characteristics - system characteristics comprise of dl the features, properties
and inherent difficulties that may have rdlevance for any of the stages in system redisation,
including requirements capture and architecture definition. System characteristics are mainly
used to guide the requirements capture process. to warrant that the contributors to the
requirements do have a full understanding of dl the difficulties that will be encountered
somewhere down the line and need to be consdered prior to construction, or even prior to
requirements definition. They are dso used to determine the stable and volatile parts of the
system and to support a holistic, multi-disciplinary approach to system development and as
apreparation to system factor development.

February, 1998 Page U-4
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

System characterigtics are collected to integrate the ingght and knowledge from different
disciplines, so that each individud expert understands the main contributions from al other
disciplines and redises that dl disciplines contribute to the same system; this does not imply
that each individua experts understands dl the facets of the system characterigtics, dthough
the system engineers need to be able to do this. In thisway system characteristics represent
an early sage of inter-disciplinary knowledge integration.

System characterigics are dso useful to identify the necessary expertise domains during
requirements capture and aso to find god conflictsin an early stage.

€) Artefact - the artefact (or artifact) is that part of the system that will be implemented by
means of hardware, software and communication facilities. The artefact is a system
engineering term, which is especidly applicable during architecture development. It is an
abdtraction of the physical sde of the system; it includes dl hardware, software and other
facilities for its operation, management and maintenance. In norma speech the term system
is applied to the artefact, but this should be abolished because system engineering
encompasses much more than just the congruction or management of the artefact. Thisis
for ingance reflected in the Information Technology Infragtructure Library (ITIL), which
dedls with much more than just the technicdlities of the system. See dso system factors.

f) Proprioception (or: System Proprioception) - the in-built facility of a sysem to monitor its
internd status and behaviour. It is meant to provide information to the system manager and
sysem maintainer about its internd functioning to enable performance enhancements, for a
timely sgndling of bottlenecks, to find, locdise and identify errors and to identify normd
and abnormd behaviour of the system.

Appendix U.2.3 Functionality Related Definitions

a) Goal Oriented Functionality - the god-oriented functiondity is the encapsulation of what
the providers and the (end) users of the system want the system to do. Based on the
objective of the system, which is normaly meant to solve a practicd problemin whole or in
part, the part of the system that is created to achieve this is the god- oriented functiondity,
congsting of functions and data. A smilar remark can be gpplied to the artefact.

In the traffic environment the god-oriented part isthat part of the system that dedls with traffic
management or meets the objectives of any other control regime involved. This is the
domain of the traffic control operator, the traffic scientist or the traffic control operators of
dl possble fadlities in the traffic environment, private toll operators and parking lot
operators included for example.

b) Supporting Functionality - the collection of functions and data in the artefact that
supports management or maintenance of the artefact. Because of the creation of the

February, 1998 Page U-5
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

system, or the artefact, some new problems are introduced because of complexity, Sze or
any other voldile parameter of the artefact. Supporting functiondity includes facilities for
management and maintenance; it does not include facilities for operations, which belong to
the god- oriented functiondity.

The supporting functiondity comprises.

the set of processes, procedures, methods, techniques, tools that dlow a product
system to be ordered, produced, transported and ingtdled, and have its avalability
maintained;

the set of processes, procedures, methods, techniques, tools that alow a living system
to be adjusted to the users needs and requirements.

c) System Factors - system factors are that parts of the system that do not belong to the
artefact but are necessary to make the artefact operationa in some sense or are necessary
for full exploitation of the system. System factors do sometimes have some impact on the
sysem architecture and hence cannot be neglected during the development of an
architecture. System factors are dtaff; organisation, procedures, documentation, office
fadilities, mathematica knowledge, help-desk, escrow services, etc.

This idea is dso expressed by saying that a system conssts of hardware, software, conm-
ware, people-ware, org-ware, proc-ware, doc-ware, etc. to indicate ther reative
importance to the more core parts of the system; without proper atention to the system
factors an artefact, however well developed and mesting its technicd objective, is likdy to
fall in some respect or to show less than optimd performance in some sense.

Appendix U.2.4 System Architecture Related Definitions

a) Condgruct - a congdruct is a structure built according to specific principles or usng a
particular set of congtruction units. An architecture, or its main body like the reference
modds, will be expressed in congtructs. Congtructs are built according to certain principles,
consderations or other imponderable factors. The validity and feashility of a construct can
be assessed by means of ‘what-if’ questions and scenario andysis.

By its very nature a congtruct in the context of an architecture is an abdtract entity; in later
stages of implementation a congtruct may be transformed into a physical entity. A construct
will be based on a modd, typicdly a reference mode which is a representation of some
actud or contemplated thing; this model will be enriched with certain characteridtics,
derived from the requirements, to make it a congruct and a candidate pat of the
architecture.

See d=0 definitions of functiond, information, physcad and communication architectures in
the main text.

February, 1998 Page U-6
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix U.2.5 Architectural Aspects Definitions

a)

Digtribution, Functional Distribution - digtribution of functiondity means that the
functions and data in the system are present and can be used at different spatia locations.
Functiond digtribution covers the phenomenon that one single computer system will not be
adequate or feasible to meet dl the demands for functions and data collections for retrieva
or update. Digtribution is an architecture related phenomenon, because it can influence both
the syslem's functiondity and its behaviour (in the sense of avalability, accesshility, user-
friendliness, performance etc.)

b) Replication, Functional Replication - replication of functiondity means thet the functions

and data in the system can be multiplied and can be used at different spatia locations.
Functiond replication covers the phenomenon that one sngle computer system will not be
adequate or feasible to meet dl the demands for a specific function or data collection for
retrieva and updates. Replication is an architecture related phenomenon, because it can
influence the systlem's behaviour (in the sense of availability, accesshility, user-friendliness,
performance etc.)

Goal Conflicts - agod conflict is a dtuation in a sysem or between systems when some
of the gods are mutudly conflicting or require the same resources. God conflicts emerge in
a multi- purpose system; the multiple gods in such a system are not necessarily congruent (if
they are the sysem is not redly multi-purpose) or in an inter-operable multi-system
environment when the sysems chase different gods. If the gods are mutudly exclusve
priority rules have to be devised and implemented to guarantee the right goadsto be redised
under certain conflicts.

God conflicts are architecture related; they need to be resolved in a proper manner, because

otherwise aberrant and undesired system behaviour might be the outcome.

d) Survivability - survivability is the continuation of some vitd sysem functions if the full

€)

functiondity of the system cannot be maintained. For some reason, e.g. absence of some
vital sensor collection, or external source of data, the system may not be able to continue
full functiondity. However, the functiondity that is not dependent or not necessaily
dependent on these input or facilities has to be continued.

Local Autonomy - locd autonomy is the continuation of some vitd system functions & a
ceatan location if the full communication with that location's environment cannot be
maintained. Locd autonomy is related to survivability, but incorporates the additiona
problem that the communication with other locations, especidly the controlling one(s) are
disrupted and that survivahility of the locd functiondity is solely dependent on the ability of
the location to act on its own behalf.

February, 1998 Page U-7
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Locd autonomy is an architectural issue, because it embodies one of the most sringent
aspects of syslem behaviour, namey availdility.

f) Continuity of Operation - continuity of operation is the ability of a sysem to permit
maintenance, changes and upgrades without (subgtantid) interruptions of the availability of
the sysem's functiondity. Continuity of operdion is especidly rlevant to those sysems
which exert control over another system which needs continuous, uninterrupted surveillance
because of stochastic processes and unpredictable or sudden events and the need to keep
the controlled system in the best condition possble. Continuity can be endangered if the
sysdem needs to be taken out of service for ordinary mantenance actions, the
implementation of maintanability should am to enable mantenance without sysem
interruption.

Continuity of operation is related to the architecture, because it embodies one of the most
stringent agpects of system behaviour namely availability.

g Control Exertion - control exertion isthe Stuation that a controlled system has to be kept
or to be guided into a certain predetermined system condition. Control can be exerted by a
person, the controller or operator, or by another system, which, in turn, can dso be
controlled by a person or another control system. Control is based on the extraction of
some vitd descriptive data from the controlled system and the gpplication of one or more
gpplication devices. The accuracy, timeliness, avalability etc. of sensors, interpretation and
transformation processes and the actuators determine the efficacy of the controlled systems
development into the desired condition in terms of effectiveness, timdiness, accuracy and
the absence of oscillations.

The exertion of control is relevant to the architecture of the controlled system, but
epecidly to that of the contralling system, which in many cases will be based on an
artefact. The architecture will reflect dl the steps to be taken to effectuate the control
implied in the process.

Appendix U.2.6 System Deployment Related Definitions

a) Operations (traffic management; gpplication of the artefact) - the activities necessary to
use the system, or more specific: the artefact, to effectuate the primary god of the system.
In the traffic environment this is the traffic control function, as performed by human
operators.

b) Management (management of the artefact) - the supporting activities to ensure
completeness, correctness, accuracy, timdiness, effectiveness, fine tuning and other
qudities of the god oriented part of the artefact. In the traffic environment Management

February, 1998 Page U-8
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

concentrates on the traffic related part of the system to keep that part in shape. The
background of this function istraffic engineering.

¢) Maintenance (maintenance of the artefact) - the supporting activities to ensure proper
operation of the overdl artefact. Maintenance encompasses. configuration management,
problem management, change management, verson management, availability managemernt,
performance management, capacity management, error detection, (hardware) preventive
mai ntenance management, system recovery management, etc.

The background of the maintenance function is system engineering. The specific agpects of this
task are indicated to clarify the differences, which are likely to lead to different experts. To
support this activity, more dedicated expertise can be involved like hardware, software or
communication knowledge. Also the wider concept above the artefact, which isthe system,
needs to be maintained. The artefact maintenance function has to monitor the functioning of
the overdl system and to Sgnd deficiencies to the higher management levd.

d) Change Management - change management is the management of dl changes imposad
on artefact or the overdl system, to safeguard the integrity of the overdl system, to limit the
cost and effort and to limit the burden to the users and maintenance staff dike.

Information Technology isincreasingly being goplied in managerid, adminigtrative and technica
systems and the Sze of these systemsiis dill increasing, together with their complexity. Asa
result, the frequency of changes increases and dso the likelihood d adverse results of
uncontrolled changes like change errors, the cregtion of inconsstencies or just
postponement of changes because of insufficient tools and gtaff. Change management is
meant to reduce the undesired effects of the need for changes.

e) Capacity Management - the management to assure the gpplicability of the available
capacity and the avallability of the necessary capacity. Examples of the capacities to be
managed are processor usage (possibly related to various applications or over time (day,
week, month, year) and the various processors in the system), disc usage (data volume,
growth, number of disc accesses, possibly related to time of day, dso related to the various
discs in the system), network use (related to time of day and backups via the network),
server usage (where processor, disc and network use may culminate).

In a system it may happen tha available capacity is not properly gpplied and dso that an
exiging or imminent cgpacity shortage is reported. Capacity management is meant to
address both phenomena and to take appropriate measures that an appropriate capacity is
avalable a any time. It is more concerned with planning and long-term satifaction of the
user needs for system capacity.

February, 1998 Page U-9
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

f) Availability Management - the management activities necessary to meet the required
avalability levels of the artefact. Avallability management covers the aspects reiahility,
recoverability, serviceability. It is more concerned with the short-term problem solution and
satisfaction of the user needs for system capacity. Avallability can be improved by the
reduction of full or patid sysem falures, or a faster, easer or more reiable system
recovery and also continuation of the basic user facilities.

g Problem Management - the management of problems in the atefact. Problems may
comprise of faults (deviations from specifications), undesired effects, deviant behaviour,
intermittent errors, unacceptable wait times and other phenomena. The problem
management activity encompasses the collection of data ebout the problem, the analyss of
the origin and background of the problem and the suggestion of ways to cope with the
problem or ways to collect further information.

h) Verson Management - verson management is the maintenance activity tha catersfor an
adequate management of versons of system dements. Both hardware and software
dements may exis in different versons. These verdons have to be known to the
maintenance Staff, because they may differ in maintenance needs and, more importantly,
may differ in generd behaviour and in fault exposure.

i) Performance Management - peformance management is the activity to collect
performance data of dl the components in the artefact to Sgnd performance shortcomings
and to take appropriate measures. Performance management is related to capacity
management and avalability management. It is a short term activity, meant to detect
performance bottlenecks, that are causing delays or waiting queues and to take measures
to tune the system or to redll ocate capacity.

J) Configuration Management - configuraion management is the activity to keep the
configuration fit to meet the changing demands of al the sakeholders and to adminigter dl
data pertaining to the artefact.

Configuration management is the managerid and adminigtrative foundation to various other
maintenance activities. In its most smple form it congsts of just the configuration database
and the facilities to keep this database congstent with the implemented artefact. In this way
it is the prime tool for avallability management and so forth. In a more advanced way the
configuration database can be used to smulate the system, to andyse problems (e.g.
performance and other behavioura problems) and to predict potentid capacity or
performance shortcomings. n a more eaborate form configuration management uses a
sysem adminigration, in which dl data pertaning to the atefact are collected in an
integrated form, instead of in isolated adminigtrations, which stuation would likdy inhibit full
explaitation of the available system data.

February, 1998 Page U-10
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Appendix U.2.7 Integration

a) Integration - integration is the combination of some components, physicd, logica or
abdtract, to redlise a higher level structure. Integration comprises the following:

the combination of the system factors with the artefact to condtitute the system,
the combination of commercid products (commercid off the shelf, COTYS);

the combination of tallor-made or customised products to one of the main functiondities
of the system;

the combination of the god-oriented functiondity with the supporting functiondity and
the infrastructure (new or exigting) to congtitute the artefact;

the combination of independent control regimes into one communicating and interrelated
sructure;

the combination of services to redise the gods of a layer in the reference modd of a
control regime;

the combination of functiond modules to implement a service;
the collection of data definitions from different sourcesinto one data dictionary;
the development of one vocabulary.

Appendix U.2.8 System Requirements Related Definitions

a) System Requirements (or Usar Reguirements) - a requirement is a condition or
capability that must be met or possessed by a system or system component to satisfy a
contract, Sandard, specification or other formally imposed document. (Part of the definition
in IEEE Standard Glossary of Software Engineering Terminology).

More specific: The user requirements are the collection of dl requirements that gpply to the
sysem as awhole, be it the artefact or the system factors.

Warning: The term user requirements addresses the same as the more regular term in system
engineering system requirements, but is adopted to comply with the jargon defined in the
European Research Programmes.

During further development of the system the user requirements are dlocated and redlised by
the artefact or the factors, or in combination. Two versions of the user requirements can be
distinguished:

the collection of requirements as expressed by each of the separate user groups as

eicited during the requirement cgpture process. This collection is not necessarily
complete and consstent, but expresses the main views of the users. This collection is

February, 1998 Page U-11
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

undergtandable for the users, but not directly fit for the development of an architecture
or the system,

the collection of requirements after the consstency, completeness and transformation
deps for the creation of requirements that can be used for the development of an
architecture. Some of the user requirements will affect the system architecture, others
will be met during subsequent stages of the system devel opment process.

b) Functional Requirements - the functiond requirements define the fulfilment of the prime

god of the intended system: the god-oriented functiondity. In a determinigtic environment
the functional requirements fully cover and describe dl the functional ementsin the system.
In a non-determinigtic environment, eg. when a system has to be functionaly expandable
or has to follow a certain evolution, then the functiond requirements do not necessarily
describe the functions a any moment of the life-cycle in the system, but are a a higher leve
of abdraction. Even if the functions of the start Stuation are fully known prior to design, this
knowledge has to be applied with prudence because firgt the Stuation may change during
design, and second the Stuation later on in the syslem will undoubtedly change (which turns
out to be the casein many systems, dso deterministic ones))

Non-Functional Requirements - non-functiona requirements are the requirements that
are invoked because the intended system has to operate in a certain environment, has to
show certain qudities or has to meet some demands for specific users. The non-functiond
requirements come from three sources. generd quality consderations (quality requirements,
source: system engineers, domain engineers, contribution from customers and users); the
specific form the sysem has to adopt (source: the customers) and the requirements
imposed because (some of) the users want to use the system in a certain way. Because of
the exigting road network and other infrastructure, some additiond congtraints may exist
that do not follow from any functiond congderation. This can be additiond input to the
non-functiond requirements.

d) Quality Requirements - qudity requirements define the set of attributes of the intended

system by which qudity is described and evauated (adapted from 1S0). See ISO/IEC
9126: Information technology - Software Product Evauation - Qudity Characteristics and
Guiddinesfor their Use.

This standard is developed to prevent repetition of earlier shortcomings and to learn from

experience. It enforces the congderation of certain aspects of the system early during the
development process, because falure to do this can hardly be corrected during a later
dage. (This standard applies to isolated information systems, but can dso be used for
systems with embedded information systems.)

February, 1998 Page U-12

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

Quadlity requirements are part of the user requirements and reflect some of the non+
functional aspects of the system, which means. mainly the supporting functiondity. The set
of quality requirements is aso indicated as the ‘ilities (or ‘illities) because of the fact that
al or dmog dl the names of the qudlity factors finish with ‘ility’.

Appendix U.2.9 Additional System Engineering Definitions

a) Expertise Domain - thisisthe collection of knowledge and insght that exigsin a separate
branch of engineering. In any system that deds with information technology, except the
ones solely dedicated to software engineering, there is the dedicated domain and the
(information) system engineering domain. For the IRTE the dedicated domain is the traffic
engineering one, possbly with a dozen of separae sub-domans. Proper system
development requires the following:

involvement of dl rdevant expertise domains,
absence of expertise overdretch.

The firgt requirement is obvious, but the second one is often violated because of financid,
organisationd and time condraints. However, a limited or flaved understanding of an
independent expertise domain may deteriorate the result, which deficiencies may not show
themselves until a a very late dage. The requirement emphasises that only staff should be
involved that has the relevant education and experience and knows how to bring thisto the
fore.

b) Application Domain (Application Area) - an gpplication domain is a subset of the set of
al the areas necessary to redise the intended system. An gpplication domain attempts to
fulfil the needs for knowledge and methods in a sdif-contained area.

c) System Administration (SAd) - the sysem adminigtration is the congtruct in the system
that supports dl types of system management and mantenance activities, including
evauation, andyds, amulation and improvements.

The system adminidration is part of the information architecture; the functionality dedling with
the SAd beongs to the supporting functiondity. Whilst the system dictionary is ingantiation
independent to a very high degree, the system administration describes the specific artefact
and some aspects of the system. However, its gods, structure and contents are to be
defined univerdly to a high degree to guarantee the problem preventing and solving
character of this condruct. The SAd has no drong relaionship with integration with
adjacent systems.

d) Sysem Archive - the sysem archive is the collection of dl software, imagery, sound
fragments etc. that is meaningful to any part of the sysem or for any of sysem relaed
activities. Whilst the SD and SAd describe the system in various detalls, these databases

February, 1998 Page U-13
Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

do not comprise dl the various eements that are necessary for al activities around the
system. Elements in the system archive are functiond modules (software), video fragments,
sound fragments, dl linked to ertriesin SD and/or SAd.

Message - a message is a compound of information for the logicd exchange of
information between two functions. This definition implies that the message is possbly but
not necessarily transported over the network, dependent on the fact whether the functions
are on different locations or on the same. This approach improves flexibility: later on the
decison of the actud implementation is not hampered by any predetermined configuration.

A messge is a way to implement logicd communication or logicd transmisson of data. To

9

explan this point: physca communication reflects the way the information is trandferred
(audio, visud, braille paper, telephone, etc.) between people (may be systems as wel).
Logica communication describes the way the information has to be interpreted.

Systematic, Systemic - in sysem theory, the terms systematic and systemic have distinct
and different meanings, and systemic being the more prominent one. Systematic means that
there is a certain pattern or regularity behind a phenomenon, methodical, procedura.
Systemic means that it refers to the generd characteridtics of a certain system, to a trait
pervading and common to the whole system. Systemic in system engineering indicates the
fact that the whole is more than the sum of the parts, that there are properties that are only
discernible a the sysem as a whole. These properties cannot be dlocated to any
subsystem and hence are known as "emergent properties’.

Efficacy, Efficiency, Effectiveness:
efficacy (for: does the system work);
efficiency (for: amount of output divided by amount of resources used by the system)

effectiveness (for: is the sysem meeting the longer term aim)

Efficacy indicates whether the product is working and the immediate needs are met;

effectiveness indicates whether the longer term and possibly evolving needs are met, this
relaes to whether the sysem is workable efficiency indicates whether the system
resources are used proficiently, which refersto a certain system quality.

h) Holistic View, Ontological View
Haligtic: concerning dl the parts;
Ontologic: concerning dl the aspects;
These terms are introduced that at some moment in the development process the system
has to be addressed as a whole (holigtic, dl the parts) but dso in dl its aspects (which is
February, 1998 Page U-14

Issue 1.0

CONVERGE-System Architecture
Guidelines for the Development and Assessment of ITS Architectures

addressed by ontologic). Thisis aso to emphasise the behavioural sde and the emergent
properties of the system, not just its composition.

February, 1998 Page U-15
Issue 1.0

